
Cabinet: Dynamically Weighted
Consensus Made Fast

Gengrui (Edward) Zhang, Shiquan Zhang,
Michail Bachras, Hans-Arno Jacobsen

Assistant Professor
Concordia University

V L D B 2 0 2 5

Consensus with majority quorums

© 2024 Gengrui (Edward) Zhang

• Consensus algorithms reach agreement on committing values among
all servers even if some servers fail

• How to reach consensus?
• Majority quorums!
• Every decision must be endorsed by a majority

oPaxos, Raft
• Tolerate 𝑓 = !"#

$
 failures 5 nodes, 3 is a majority When 𝑛 = 5,

• Quorum size = 	3
• Tolerate 2 failures

2

Majority quorums may become inefficient
in modern computing applications

Features of modern computing
1. System scales continue to grow;

e.g., distributed databases and
blockchain applications
(Hyperledger Fabric)

2. Systems are becoming
increasingly heterogeneous
• Strong nodes
• Weak nodes

© 2024 Gengrui (Edward) Zhang 3

Strong nodes Weak nodes

Strong nodes often compute,
store, and respond faster then

weak nodes

Under large-scale, especially heterogeneous clusters

© 2024 Gengrui (Edward) Zhang

… …

When 𝑛 = 100, quorum size = 	51, tolerating 49 failures

Majority quorums may become inefficient because of the
quorum size required by each round

Strong nodes are compelled
to wait for weak nodes,

resulting in low throughput
and high latency!

Str
ong
Str
ongStr

ong We
ak

We
ak

4

© 2024 Gengrui (Edward) Zhang

Cabinet:
Dynamically Weighted
Consensus Made Fast

5

• A configurable failure threshold, 𝑡 (1 ≤ 𝑡 ≤ !"#
$

)
• Tolerate at least 𝑡 failures with a quorum size of 𝑡 + 1

One-size-fits-all weight scheme

𝑛! 𝑛" 𝑛"#! 𝑛"#$ 𝑛%&!… … 𝑛%𝑛"#'

𝑤! 𝑤" 𝑤"#! 𝑤"#$ 𝑤%&!… … 𝑤%𝑤"#'

Cabinet members: top 𝑡 + 1	highest
weighted nodes

𝐶𝑇 =*
!"#

$
𝑤!
2

𝐈𝐧𝐯𝐚𝐫𝐢𝐚𝐧𝐭	𝟏: *
𝒊"𝟏	→𝒕*𝟏

𝒘𝒊 > 𝑪𝑻
𝐈𝐧𝐯𝐚𝐫𝐢𝐚𝐧𝐭	𝟐: *

𝒊"𝟏	→𝒕

𝒘𝒊 < 𝑪𝑻

Safety
No two correct nodes decide

differently

Liveness
Nodes eventually decide

Fast Agreement
System wide agreement can be
made as soon as 𝑡 + 1 nodes

reach an agreement
(e.g., 𝑡 = 5, 𝑛 = 100)

© 2024 Gengrui (Edward) Zhang 6

Cabinet’s implementation of weight scheme

𝑤! 𝑤$ 𝑤%&! 𝑤% 𝐶𝑇 =*
!"#

$
𝑤!
2

𝐈𝐧𝐯𝐚𝐫𝐢𝐚𝐧𝐭	𝟏: *
𝒊"𝟏	→𝒕*𝟏

𝒘𝒊 > 𝑪𝑻𝐈𝐧𝐯𝐚𝐫𝐢𝐚𝐧𝐭	𝟐: *
𝒊"𝟏	→𝒕

𝒘𝒊 < 𝑪𝑻

Weights:

Geometric
sequence:

• Cabinet uses geometric sequences to construct weight schemes

𝑎!𝑎!𝑟𝑎!𝑟$

𝑤%&$…> > > >

>>…𝑎!𝑟%&$𝑎!𝑟%&! >

Have your own weight
scheme with 𝒏 and 𝒕

(𝒏: # of nodes; 𝒕: # of failures)

Simple and

effective!

© 2024 Gengrui (Edward) Zhang 7

Example of Cabinet’s weight schemes

Cabinet weight schemes with different customized failure
thresholds (𝑡 = 1, 2, 3, 4) in a 𝑛 = 10	system

Cabinet members

© 2024 Gengrui (Edward) Zhang 8

of failures
tolerated

Dynamic weight assignment (t=2)

© 2024 Gengrui (Edward) Zhang 9

n1

n2

n3

n4

n5

n6

n7

(Leader)
12

10

8

6

4

3

2

Cabinet members

{n2, n1, n4, n5, n6, n7} {n4, n5, n6, n2, n7, n1}

12

10

8

6

4

3

2

10

8

12

6

4

3

2

𝑪𝑻 =2
𝑾
𝟐
= 𝟐𝟐. 𝟓 The first 𝒕 + 𝟏	replying nodes in round 𝒓

become the cabinet members in round 𝒓 + 𝟏

© 2024 Gengrui (Edward) Zhang 10

n1

n2

n3

n4

n5

n6

n7

(Leader)
10

8

12

6

4

3

2

Feature 1: Tolerating more than 𝑡 failures

Majority quorums:
• Tolerating 𝑛 − 1/2 failures (t=3	here)

Worst case Cabinet:
• When Cabinet members fail,

tolerating 𝑡 failures (t=2	here)

𝑪𝑻 =2
𝑾
𝟐
= 𝟐𝟐. 𝟓

Feature 1: Tolerating more than 𝑡 failures

© 2024 Gengrui (Edward) Zhang 11

n1

n2

n3

n4

n5

n6

n7

(Leader)
10

8

12

6

4

3

2

Best case Cabinet:
• When non-Cabinet members fail,

tolerating up to n-t-1 failures (t=4	here)

Majority quorums:
• Tolerating 𝑛 − 1/2 failures (t=3	here)

Worst case Cabinet:
• When Cabinet members fail,

tolerating 𝑡 failures (t=2	here)

𝑪𝑻 =2
𝑾
𝟐
= 𝟐𝟐. 𝟓

Feature 2: Avoid manual role selections

• Under large replication
deployment, Cabinet does not
need to manually partition
nodes to “acceptors/followers”
or “learners”

• Cabinet members are actively
participating nodes – aka
acceptors/followers

• Non-Cabinet members are
learners, and still learn the
results in one round

© 2024 Gengrui (Edward) Zhang 12

n1

n2

n3

n4

n5

n6

n7

(Leader)
12

10

8

6

4

3

2

12

10

8

6

4

3

2

10

8

12

6

4

3

2

Cabinet members
“actively participating”

Non-Cabinet members
“learners, learning in one round”

Evaluation: cluster setup
• Homogeneous and heterogeneous

clusters of sizes of 𝑛 = 10, 20, 50, 100
• Heterogeneity of CPUs, RAM,

and Disk
• Evaluated using YCSB workloads,

where each follower runs a MongoDB

1 vCPU, 7.5GB RAM, and 56GB Disk

Z1

Z2

Z3

Z4

Z5

Homogeneous Heterogeneous

10 nodes × C3 10 nodes × C1
(weakest)

10 nodes × C3 10 nodes × C2

𝑛 = 50

10 nodes × C3 10 nodes × C3

10 nodes × C3 10 nodes × C4

10 nodes × C3 10 nodes × C5
(strongest)

© 2024 Gengrui (Edward) Zhang 13

Performance under scaling clusters

Cabinet’s weighted consensus mechanism consistently
outperforms Raft’s traditional consensus at all scales

Heterogeneous clusters under
YCSB workload A

© 2024 Gengrui (Edward) Zhang 14

Performance under dynamic network delays

Z1 Z2 Z3 Z4 Z5

Network delays of 1000 ± 200𝑚𝑠	
to 100 ± 20𝑚𝑠 are dynamically
imposed across 5 zones

© 2024 Gengrui (Edward) Zhang 15

Performance under dynamic network delays

Z1 Z2 Z3 Z4 Z5

𝑛 = 50	heterogeneous cluster
under YCSB workload A

Network delays of 1000 ± 200𝑚𝑠	
to 100 ± 20𝑚𝑠 are dynamically
imposed across 5 zones

Strong nodes experience
high network delays

Weight reassignment promptly reassigns
high weights to currently faster nodes.
Cabinet stays at optimal performance!

© 2024 Gengrui (Edward) Zhang 16

Performance under crash failures
At round 20, we crashed x nodes

• Strong kills crash x top highest-weight nodes
• Weak kills crash x bottom lowest-weight nodes
• Random kills randomly crash x nodes

Cabinet outperforms Raft under all failure strategies

© 2024 Gengrui (Edward) Zhang 17

Conclusions
• Cabinet is the first dynamically weighted consensus algorithm

• Achieving fast agreements with a quorum size of 𝑡+1
• Tolerating at least 𝒕 failures at least and 𝒏-𝒕-𝟏	failures at most

• Cabinet offers a new tradeoff frontier between performance and fault
tolerance

• Gains higher performance by relaxing absolute fault-tolerance
guarantees (in practice, it can often tolerate more failures)

• Adds only two integers into Raft’s RPCs, making integration into
existing Raft systems straightforward

© 2024 Gengrui (Edward) Zhang 18

Code: Website: Thank you!

