
COEN 6731 Winter 2026 Course Project

1 Project Overview

Each student or group (max two students) may choose to work on a designated topic from the
provided suggestions. The course project requires the submission of the following:

• A proposal report (1 page) and proposal presentation slides (5 slides max).

• Midterm progress presentation slides (5 slides max).

• A final project report (6 pages max) and final presentation slides (8 slides max).

All reports must adhere to the USENIX paper format using the LaTeX template. Deadlines
are stated on the course website.

The primary objective of the course project is to enable students to demonstrate their ability to
research, design, and implement a well-scoped problem in the area of distributed systems. Emphasis
is placed on the application of a sound research methodology throughout the entire project
lifecycle, including problem formulation, system design, implementation, evaluation, and analysis.

Throughout the course, students will be exposed to research methodologies by reading and
critically analyzing selected research papers, complemented by in-class discussions. These skills are
expected to be reflected in the project work and final report.

For groups of two students, the final report must include a contribution table clearly doc-
umenting the responsibilities and contributions of each group member. In cases where significant
imbalances in contribution are identified, individual grades may be adjusted accordingly.

1.1 Suggested Topics

1. Building a Distributed Key-Value Store with Cabinet

In this project, you will build a distributed key-value store using Cabinet, a weighted consen-
sus algorithm developed for fast convergence under heterogeneous environments. Unlike Raft,
Cabinet assigns different voting weights to servers, allowing high-capacity nodes to contribute
more strongly to consensus decisions.

The implementation of the Cabinet consensus protocol is provided at: https://github.com/
gengruizhang/cabinet

Your task is to integrate Cabinet into a fully functional distributed key-value store that
supports basic operations such as PUT, GET, and DELETE. The system should replicate data
across multiple nodes and ensure consistency using Cabinet.

Distributed systems concepts involved:

• Consensus and replication

• Leader-based coordination

1

https://www.usenix.org/conferences/author-resources/paper-templates
https://github.com/gengruizhang/cabinet
https://github.com/gengruizhang/cabinet


• Fault tolerance under node failures

• Performance trade-offs with weighted voting

Programming language: Go (recommended), or re-implement Cabinet in C/C++/Java/Rust.

2. Using Apache Spark for Distributed Computing

This project focuses on large-scale data processing using Apache Spark. You will design
and implement a distributed data processing pipeline that runs on multiple worker nodes
and performs non-trivial computations (e.g., joins, shuffles, iterative processing, and window
analytics). Your pipeline must be reproducible and must report runtime/scale results across
different cluster sizes or data sizes.

Example Project A: E-commerce Analytics with Sessions, Funnels, and Attribu-
tion

You find or generate the following datasets:

• events(user id, timestamp, event type, product id, session id?, device, referrer)

• orders(order id, user id, timestamp, total amount)

• catalog(product id, category, brand, price)

Implement a Spark pipeline that performs:

(a) Sessionization: Build sessions per user using an inactivity threshold (e.g., 30 minutes).
If session id is missing, derive it using time gaps. (Requires window functions and
stateful grouping.)

(b) Funnel conversion analysis: Compute conversion rates for funnels such as

view → add to cart → purchase

at the granularity of (category, device, referrer) and by day/week.

(c) Attribution: Attribute each order to the most recent non-direct referrer within the last
k hours (e.g., last-touch attribution). (Requires joins between session events and orders
with time constraints.)

(d) Anomaly detection (system-level): Detect sudden drops/spikes in conversions us-
ing rolling baselines (e.g., comparing to trailing 7-day moving averages). Output top
anomalies with explanations.

Example Project B: Graph Analytics on Large Networks (PageRank + Commu-
nity Signals)

You create a directed graph dataset such as:

• edges(src, dst, timestamp?) (optionally temporal)

• node meta(node id, type, region, attributes...) (optional)

Implement a Spark-based graph analytics workflow that includes:

(a) Iterative PageRank (distributed iteration): Implement PageRank for T iterations
using Spark DataFrames/RDDs (or GraphFrames if you choose, but you must still ex-
plain the execution and performance). Report convergence trends and runtime vs. T
and graph size.

2



(b) Community signal / triangle analysis: Compute triangle counts or clustering coeffi-
cients for high-degree nodes (or approximate versions if exact is too expensive). Discuss
trade-offs between exact and approximate approaches.

(c) Temporal extension (optional but encouraged): If timestamps exist, compute how
PageRank changes over time windows (e.g., daily snapshots) and identify nodes with the
largest rank volatility.

(d) Skew handling and scaling study: Demonstrate at least one real performance is-
sue (e.g., high-degree node skew causing stragglers), then mitigate it (e.g., salting keys,
custom partitioning, broadcast joins, or graph preprocessing). Provide before/after mea-
surements.

Programming language: PySpark or Scala.

3. Distributed Training System

In this project, you will design and implement a distributed machine learning training
system in which multiple worker nodes collaboratively train a shared model. Training may
be coordinated using either a centralized parameter-server architecture or a decen-
tralized (peer-to-peer) synchronization mechanism.

The machine learning model itself may be simple (e.g., linear or logistic regression); how-
ever, the dataset must be sufficiently large to require distributed computation. Students
are expected to focus on system-level challenges, including efficient synchronization, con-
sistency of model updates, communication overhead, and tolerance to worker or network
failures.

The system should be able to synchronize model updates efficiently and handle failures
gracefully (e.g., straggler workers, dropped messages, or node crashes).

The primary focus of this project is on distributed system design and implementation,
not on achieving high model accuracy.

Distributed systems concepts involved:

• Distributed coordination and synchronization

• Consistency vs. performance trade-offs

• Fault tolerance and failure recovery during training

Programming language: Python or any suitable programming language.

4. Cloud Database System

This project involves building a simplified cloud database service composed of multiple back-
end nodes and a client-facing interface. The system should support concurrent clients and
store data across at least three server processes.

You should explicitly address:

• Load balancing across database nodes

• Replication and fault tolerance

• Client request routing

3



The database does not need to support SQL but must demonstrate distributed storage and
coordination.

Distributed systems concepts involved:

• Replication strategies

• Failure recovery

• Scalability and concurrency

Programming language: C/C++/Go/Java/Rust.

5. Distributed Chat and File Transfer System

In this project, you will implement a distributed chat and file transfer application. The system
should support multiple clients, non-blocking communication, and reliable message delivery.

Requirements include:

• Use of gRPC for communication

• Non-blocking or asynchronous I/O

• Support for multiple concurrent clients

You may design either a centralized or partially decentralized architecture, but the system
must involve multiple backend processes.

Distributed systems concepts involved:

• Client-server communication

• Concurrency and scalability

• Fault handling and reconnection

Programming language: Frontend: Any. Backend: C/C++/Go/Java/Rust

2 Project Proposal and Presentation

You will need to submit a one-page proposal using the provided LaTeX template and your
presentation slides (maximum of 5 slides). The proposal and slides should clearly articulate
your project idea and intended approach.

2.1 Project Proposal

The proposal must adhere to the following requirements and must not exceed ONE page. Use the
provided one-pager LaTeX template for submission. The proposal should include:

• Problem Statement: Clearly and concisely identify the problem you aim to address. If in
doubt, start with: “The problem is. . . ” (Just a few sentences)

• Relevance: Explain why the problem is important. Highlight its potential impact—what
would solving this problem change or improve?

• Interest: Convince the audience that the problem is challenging and non-trivial. Demon-
strate that it requires thought and effort to solve.

4



• Related Approaches: Briefly review what others have done to address this problem. Pro-
vide context for your project by referencing related work.

• Approach Overview and Methodology: Sketch your intended approach to solving the
problem. Provide a high-level summary of your plan. In addition, briefly describe how you
plan to tackle the problem. Specify whether you will use implementation and evaluation,
modeling and simulation, theorem definition and proof, or another method.

• Anticipated Difficulties: Identify potential challenges or obstacles you expect to face dur-
ing your project.

2.2 Project Proposal Presentation

You will be given 5 minutes to present your proposal. Your slides should be structured as follows:

• Use 1–2 slides to present the problem you are trying to solve, including the background and
motivation.

• Use 1–2 slides to describe your proposed approach and methodology. Provide a concise
overview of your plan.

• Use 1 slide to outline the anticipated difficulties. Focus on difficulties that are objective.
For example, “We may need more machines to simulate distributed scenarios” or “We may
need to identify appropriate workloads for evaluation” are valid. Avoid subjective challenges
such as “I am not good at programming”.

3 Progress Presentation

For the progress presentation, you will only need to present your progress and submit your
slides. A written report is NOT required. You will have 5 minutes to present your progress.
Your presentation should address the following points:

• Changes Since the Proposal: Highlight any modifications or updates to your original plan
since the proposal. Discuss why these changes were necessary.

• Current Progress: Provide an overview of the progress you have made so far. Clearly state
the current status of your project.

• Achievements: Summarize the key accomplishments you have achieved to date.

4 Final Project Presentation and Report

You are required to present your final project in the last lecture and submit your final project
report by the deadline.

4.1 Final presentation

During the final lecture, all students will present their project work. Each presentation will be
allotted 10 minutes. Your presentation should cover the following components:

5



1. Problem Statement: Use a single slide to succinctly present the problem. Avoid covering
background or motivation, as these were already addressed in your proposal and progress
presentations.

2. Proposed Solutions: Allocate 2-4 slides to provide a detailed explanation of your solution.
This should include how the problem is addressed, a presentation of your system architecture,
an analysis of its strengths and limitations, and any other pertinent details.

3. Evaluation Results: Use 2-3 slides to showcase quantifiable evaluation results. Highlight
how your system or algorithm performs under relevant workloads and representative scenarios.

4.2 Final report

The final project should not exceed six pages, excluding references. If additional space is needed
for supplementary material, you may include an appendix. However, ensure the appendix is well-
organized and separate from the main content.

The report should be of “publishable quality,” meaning it must be free of typos, grammatical
errors, and other issues. However, this does not imply that the report needs to be ready for
publication in a major venue. Achieving a perfect experiment result is encouraged but not required.

Your final report should include the following sections:

1. Problem Statement: Clearly articulate the motivation for and background of the project.

2. Solutions: Provide a detailed description of the solution, including figures where necessary
to illustrate how the problem was addressed.

3. Results: Present any quantifiable results, comparisons, and relevant findings.

4. Discussion: Offer an analysis and interpretation of the results.

5. Availability: Include a section with a link to your GitHub repository, where the project
code can be accessed.

6


	Project Overview
	Suggested Topics

	Project Proposal and Presentation
	Project Proposal
	Project Proposal Presentation

	Progress Presentation
	Final Project Presentation and Report
	Final presentation
	Final report


