COENG6731 Distributed Software Systems

Week 3: RPCs, Raft

Gengrui (Edward) Zhang, PhD
Web: gengruizhang.com

© 2025 Gengrui (Edward) Zhang

http://gengruizhang.com

Today’s outline

Remote procedure calls (RPCs)
Raft

Log replication

L eader election

© 2025 Gengrui (Edward) Zhang

What is remote procedure calls (RPCs)?

 (Goal: make the process of executing code on a remote machine as simple
and straight-forward as calling a local function

* Client issues a procedure call and wait for results to be returned
e Server simply defines some routines that it wishes to export

© 2025 Gengrui (Edward) Zhang

What is remote procedure calls (RPCs)?

 (Goal: make the process of executing code on a remote machine as simple
and straight-forward as calling a local function

* Client issues a procedure call and wait for results to be returned

e Server simply defines some routines that it wishes to export
 RPC has two important components:

 Stub generator (aka protocol compiler)

 Run-time library

© 2025 Gengrui (Edward) Zhang

Stub generator

* Automate packing function arguments and results into messages

Client stub Server stub

© 2025 Gengrui (Edward) Zhang

Stub generator

* Automate packing function arguments and results into messages

Client stub Server stub

Create a message buffer

© 2025 Gengrui (Edward) Zhang

Stub generator

* Automate packing function arguments and results into messages

Client stub Server stub

Create a message buffer

Pack needed information e.g, marshaling
into the message buffer or serialization

© 2025 Gengrui (Edward) Zhang

Stub generator

* Automate packing function arguments and results into messages

Client stub Server stub

Create a message buffer

Pack needed information e.g, marshaling
into the message buffer or serialization

Send message to

destination RPC serveM

© 2025 Gengrui (Edward) Zhang

Stub generator

* Automate packing function arguments and results into messages

Client stub Server stub

Create a message buffer

Pack needed information e.g, marshaling
into the message buffer or serialization

Send message to

destination RPC serveM

Wait for reply

© 2025 Gengrui (Edward) Zhang

Stub generator

* Automate packing function arguments and results into messages

Client stub Server stub

Create a message buffer

Pack needed information e.g, marshaling
into the message buffer or serialization

Send message to

. L \ e.g, unmarshaling
destination RPC server Unpack th or deserialization

@
3
@
0
7
QO

Q
@

Wait for reply

© 2025 Gengrui (Edward) Zhang

Stub generator

* Automate packing function arguments and results into messages

Client stub Server stub

Create a message buffer

Pack needed information e.g, marshaling
into the message buffer or serialization

Send message to e.g, unmarshaling
destination RPC serveM Unpack the message or deserialization

Wait f(); reply Call into invoked function

© 2025 Gengrui (Edward) Zhang

Stub generator

* Automate packing function arguments and results into messages

Client stub Server stub

Create a message buffer

Pack needed information e.g, marshaling
into the message buffer or serialization

Send message to e.g, unmarshaling
destination RPC serveM Unpack the message or deserialization

Call into invoked function

Package result and send

w— thereply

Wait for reply

© 2025 Gengrui (Edward) Zhang

Stub generator

* Automate packing function arguments and results into messages

Client stub Server stub

Create a message buffer

Pack needed information e.g, marshaling
into the message buffer or serialization

Send message to e.g, unmarshaling
destination RPC serveM Unpack the message or deserialization

Wait fo; reply Call into invo.ked function

- Package result and send

Unpack retIJrn code / the reply

and other arguments

© 2025 Gengrui (Edward) Zhang

Stub generator

* Automate packing function arguments and results into messages

Client stub Server stub

Create a message buffer

Pack needed information e.g, marshaling
into the message buffer or serialization

Send message to e.g, unmarshaling
destination RPC serveM Unpack the message or deserialization

Wait fo; reply Call into invo.ked function

- Package result and send

Unpack retIJrn code / the reply

and other arguments

Return to caller

© 2025 Gengrui (Edward) Zhang

Run-time library (RTL)

RTL handles communication between client and server. E.q.,

Run-time library (RTL)

RTL handles communication between client and server. E.q.,

 Naming
 E.g., hosthames and port numbers provided by internet protocols

© 2025 Gengrui (Edward) Zhang

https://grpc.io/

Run-time library (RTL)

RTL handles communication between client and server. E.q.,

 Naming
 E.g., hosthames and port numbers provided by internet protocols
* Transport-level protocol

e E.g., TCP (e.qg., gBRPC) and UDP

© 2025 Gengrui (Edward) Zhang

https://grpc.io/

Run-time library (RTL)

RTL handles communication between client and server. E.g.,
 Naming

 E.g., hosthames and port numbers provided by internet protocols
* Transport-level protocol

e E.g., TCP (e.qg., gBRPC) and UDP
 Timing

© 2025 Gengrui (Edward) Zhang

https://grpc.io/

Run-time library (RTL)

RTL handles communication between client and server. E.q.,
 Naming

 E.g., hosthames and port numbers provided by internet protocols
* Transport-level protocol

e E.g., TCP (e.qg., gBRPC) and UDP
 Timing

* | arge arguments (larger than a single packet)
* E.g., fragmentation (sender) and reassembly (receiver)

© 2025 Gengrui (Edward) Zhang

https://grpc.io/

Server

Client

© 2025 Gengrui (Edward) Zhang

Client Server

E.Q.,

RPC call Call(*remote func”, args, &reply)

© 2025 Gengrui (Edward) Zhang

Client Server

. E.Q., .
RPC call - Call(*remote func”, args, &reply) :

Recelve request
and start procedure

- E.g., func(args, &reply)

Procedure done;
: send reply

© 2025 Gengrui (Edward) Zhang 9

Client Server

. E.Q., .
RPC call - Call(*remote func”, args, &reply) :

Recelve request
and start procedure

- E.g., func(args, &reply)

Procedure done;
: : send reply
E E E

.g.,
reply = X

© 2025 Gengrui (Edward) Zhang 9

Client Server

. E.Q., .
RPC call - Call(*remote func”, args, &reply) :

Recelve request
and start procedure

- E.g., func(args, &reply)

Procedure done;
: : send reply
Get result from - E E

_ 9.,
RPC call E reply = X

© 2025 Gengrui (Edward) Zhang 9

Demo

client.go server.go

go run client.go go run server.go

© 2025 Gengrui (Edward) Zhang

Today’s outline

Raft
Log replication
Leader election

© 2025 Gengrui (Edward) Zhang

State machine replication (SMR)

Clients Service

SMR is a replication service where a set
of servers compute identical copies of

@ the same state

Abstraction of

: Recall properties of consensus
SMR services

© 2025 Gengrui (Edward) Zhang

State machine replication (SMR)

Clients Service

SMR is a replication service where a set
of servers compute identical copies of

@ the same state

Abstraction of

: Recall properties of consensus
SMR services

Safety: No two correct nodes decide
differently

Liveness: Nodes eventually decide

© 2025 Gengrui (Edward) Zhang

Raft

e

S—

Fault Tolerant

—_—

€ >a Replicated And

o

—

* Published by Diego Ongaro et al. (from Stanford) and received Best Paper

Award at 2014 USENIX Annual Technical Conference

© 2025 Gengrui (Edward) Zhang

10

~ 2= Replicated And

Raft

Y \V Fault Tolerant

* Published by Diego Ongaro et al. (from Stanford) and received Best Paper
Award at 2014 USENIX Annual Technical Conference

 Raft is a strong leader-based consensus algorithm
 More understandable than Paxos (alleged)
* Only one leader at any time
* Tolerates non-Byzantine failures
 E.Q., server crash, packet loss, duplication, and reordering
 Numerous applications
* File systems, databases, cloud computing

© 2025 Gengrui (Edward) Zhang

10

Raft basics #1: server roles/states

e Recall server roles in Paxos
 Proposer, acceptor, and learner
A server can have multiple roles at the same time

© 2025 Gengrui (Edward) Zhang

11

Raft basics #1: server roles/states

* Recall server roles in Paxos
 Proposer, acceptor, and learner
A server can have multiple roles at the same time
* |n Raft, servers may have three roles:
L eader, follower, and candidate
* A server can operate as only one role at any given time

 Under normal operation, there is one leader and other servers operate
as followers

© 2025 Gengrui (Edward) Zhang

11

Raft basics #2: timers and heartbeats

 How often do you check on your family or friends?

12

Raft basics #2: timers and heartbeats

 How often do you check on your family or friends?

* How do followers know if the “leader is doing well”
* | eader must check on follower in a given period

© 2025 Gengrui (Edward) Zhang

12

Raft basics #2: timers and heartbeats

 How often do you check on your family or friends?

* How do followers know if the “leader is doing well”
* | eader must check on follower in a given period

 Each follower uses a timer to monitor the “health” of the leader
 Timer keeps counting down until follower receives a heartbeat
 Otherwise, timer expires, follower starts leader election

© 2025 Gengrui (Edward) Zhang

12

Raft basics #2: timers and heartbeats

 How often do you check on your family or friends?

* How do followers know if the “leader is doing well”

* | eader must check on follower in a given period

 Each follower uses a timer to monitor the “health” of the leader
 Timer keeps counting down until follower receives a heartbeat
 Otherwise, timer expires, follower starts leader election

 |Leader sends periodic heartbeats to reset followers’ timers
 Heartbeat intervals (e.g., 50ms) << timer timeouts (e.g., 1-2s)

© 2025 Gengrui (Edward) Zhang

12

Raft basics #3: terms

e Time iIs divided into terms, which
Increase monotonically

* Recall Lamport/logical clocks
Term 1 Term 2

Term 3

A

Leader election Replication

© 2025 Gengrui (Edward) Zhang

Time

13

Raft basics #3: terms

e Time iIs divided into terms, which
Increase monotonically

* Recall Lamport/logical clocks
Term 1 Term 2 Term 3

e Terms are a local variable and act as

logical clocks / ;\ .
Time

e |t does not increase for all events Leader election Replication

* Primarily used for leader election

© 2025 Gengrui (Edward) Zhang

Raft basics #3: terms

e Time iIs divided into terms, which
Increase monotonically

e Terms are a local variable and act as

logical clocks / ;\

Recall Lamport/logical clocks
Term 1 Term 2

Term 3

It does not increase for all events Leader election Replication
Primarily used for leader election

* A server, regardless of its operating
role, always sync up to a higher term

© 2025 Gengrui (Edward) Zhang

Time

13

Raft: log replication

Clients Service S1 is leader; others are followers

e |eader issues AppendEntriesRPC

AppendEntries RPC

Arguments:
term

leaderld
prevLogIndex

prevLogTerm

entries|]
leaderCommit

S1 S2 S3 S4 S5
Received

Committed

Results:

term
success

© 2025 Gengrui (Edward) Zhang

leader’s term

so follower can redirect clients
index of log entry immediately preceding

new oncs

term of prevLoglIndex entry
log entries to store (empty for heartbeat;

may send more than one for efficiency)
leader’s commitIndex

currentTerm, for leader to update itself
true if follower contained entry matching

prevLogIndex and prevLogTerm

14

Raft: log replication

e Strong leadership
* Log entries flow only from the leader to followers
* Followers must synchronize its log according to leader’s log

e Quorum replication

 In a system of n = 2f + 1 servers, consensus is reached when f + 1
servers commit

A minority of slow servers (< f) do not impact overall replication
performance

© 2025 Gengrui (Edward) Zhang

15

Fallures In Raft

 \We've seen how Raft efficiently replicate log entries under normal case
 Now let’s discuss what will happen under failures

© 2025 Gengrui (Edward) Zhang

16

Fallures In Raft

 \We've seen how Raft efficiently replicate log entries under normal case
 Now let’s discuss what will happen under failures
* Followers fall

 How many followers are allowed to fail?

© 2025 Gengrui (Edward) Zhang

16

Fallures In Raft

We’ve seen how Raft efficiently replicate log entries under normal case
Now let’s discuss what will happen under failures
Followers falil
« How many followers are allowed to fail?
Leader falls
 What do we need from a new leader?

© 2025 Gengrui (Edward) Zhang

16

Fallures In Raft

We’ve seen how Raft efficiently replicate log entries under normal case
Now let’s discuss what will happen under failures
Followers falil
« How many followers are allowed to fail?
Leader falls
 What do we need from a new leader?

A new leader should have Make sure the system never
. the highest term value |:> falls back to a previous state;

. the most up-to-date log l.e., not loosing log entries
when leadership changes

© 2025 Gengrui (Edward) Zhang

16

Solution 1: Passive leadership rotation

* Pre-define a leadership schedule
e leaderlID = term mod n @
* Write an algorithm

OO
O

© 2025 Gengrui (Edward) Zhang

17

Solution 1: Passive leadership rotation

* Pre-define a leadership schedule

e leaderlID = term mod n @
 Pros:

e Simple; easy to implement @ @
e Cons:

 Cannot avoid already crashed

servers
e Cannot avoid slow servers @

© 2025 Gengrui (Edward) Zhang

18

starts up

times out,
starts election

discovers current
leader or new term

Raft’s leader election

* |nstead of passively rotate leadership, Raft
enables followers who detect a leader’s failure to

times out. actively campaign for leadership

new election receives votes from . _
majority of servers * (Crashed servers will not start a campaign

e Slow servers will not win

discovers server
with higher term

© 2025 Gengrui (Edward) Zhang

19

times out,
startsup times out, new election
starts election

discovers current
leader or new term

receives votes from
majority of servers

discovers server
with higher term

Raft’s leader election

Instead of passively rotate leadership, Raft
enables followers who detect a leader’s failure to
actively campaign for leadership

* (Crashed servers will not start a campaign

* Slow servers will not win

Properties we need to guarantee:

« At most one leader Is elected in a given term

 Elected leader must have most up-to-date
log

 Elected leader must be in the highest term

© 2025 Gengrui (Edward) Zhang

19

Raft’s leader election

Upon a timeout // timer resets and keeps going

1. Transition from follower to candidate RequestVote RPC

2. Increment term Arguments:

3. Issue RequestVote RPCs e T v

4. Vote for itself eiloginder indexofcandiie’s st og oty (350
// wait for a majority of votes Results:

5. Majority of votes received before timeout? VoteGranted true means candidate received vote

become new leader : go back to 1. and repeat

© 2025 Gengrui (Edward) Zhang 20

Raft’s leader election

Upon a timeout // timer resets and keeps going

1. Transition from follower to candidate RequestVote RPC

2. Increment term Arguments:

3. Issue RequestVote RPCs e T v

4. Vote for itself eiloginder indexafoendidi’s s og ety (359
// wait for a majority of votes Results:

5. Majority of votes received before timeout? VoteGranted true means candidate received vote

become new leader : go back to 1. and repeat

Discovers current leader or higher term?
Go back to follower

© 2025 Gengrui (Edward) Zhang 20

Voters: how should | vote for a candidate?

A server votes for the candidate if

1. Candidate’s term > its own term
2. It has not voted yet in this term
3. Candidate’s log is at least as up-to-date as its log

© 2025 Gengrui (Edward) Zhang

21

Upon a timeout // timer resets and keeps going
Transition from follower to candidate

ncrement term

1.
2.
3. Issue RequestVote RPCs
4. \Vote for itself

// wait for a majority of votes

5. Majority of votes received before timeout?
become new leader : go back to 1. and repeat

A server votes for the candidate if

1. Candidate’s term > its own term

2. It has not voted yet In this term

3. Candidate’s log is at least as up-to-date as its log

) @
© &

© 2025 Gengrui (Edward) Zhang

22

Upon a timeout // timer resets and keeps going
Transition from follower to candidate

ncrement term

1.
2.
3. Issue RequestVote RPCs
4. \Vote for itself

// wait for a majority of votes

5. Majority of votes received before timeout?
become new leader : go back to 1. and repeat

A server votes for the candidate if

1. Candidate’s term > its own term

2. It has not voted yet In this term

3. Candidate’s log is at least as up-to-date as its log

) @
© &

© 2025 Gengrui (Edward) Zhang

23

Summary

 Raft operates in a succession of terms
 |eader election
* Replication

» Raft is fast and efficient
 Under normal operation, consensus is achieved by one round of RPCs
o Strong leadership: followers synchronize to leader

* | eader election mechanism allows servers to proactively campaign for
leadership

© 2025 Gengrui (Edward) Zhang

24

Worksheet

© 2025 Gengrui (Edward) Zhang

25

