
© 2025 Gengrui (Edward) Zhang

COEN6731 Distributed Software Systems

Week 3: RPCs, Raft

Gengrui (Edward) Zhang, PhD

Web: gengruizhang.com

http://gengruizhang.com

© 2025 Gengrui (Edward) Zhang 2

Today’s outline

Remote procedure calls (RPCs)
Raft
Log replication

Leader election

© 2025 Gengrui (Edward) Zhang

What is remote procedure calls (RPCs)?
• Goal: make the process of executing code on a remote machine as simple

and straight-forward as calling a local function

• Client issues a procedure call and wait for results to be returned

• Server simply defines some routines that it wishes to export

3

© 2025 Gengrui (Edward) Zhang

What is remote procedure calls (RPCs)?
• Goal: make the process of executing code on a remote machine as simple

and straight-forward as calling a local function

• Client issues a procedure call and wait for results to be returned

• Server simply defines some routines that it wishes to export

• RPC has two important components:

• Stub generator (aka protocol compiler)

• Run-time library

3

© 2025 Gengrui (Edward) Zhang

Stub generator
• Automate packing function arguments and results into messages

4

Client stub Server stub

© 2025 Gengrui (Edward) Zhang

Stub generator
• Automate packing function arguments and results into messages

4

Client stub Server stub
Create a message buffer

© 2025 Gengrui (Edward) Zhang

Stub generator
• Automate packing function arguments and results into messages

4

Client stub Server stub
Create a message buffer
Pack needed information
into the message buffer

e.g, marshaling  
or serialization

© 2025 Gengrui (Edward) Zhang

Stub generator
• Automate packing function arguments and results into messages

4

Client stub Server stub
Create a message buffer
Pack needed information
into the message buffer

e.g, marshaling  
or serialization

Send message to
destination RPC server

© 2025 Gengrui (Edward) Zhang

Stub generator
• Automate packing function arguments and results into messages

4

Client stub Server stub
Create a message buffer

Wait for reply

Pack needed information
into the message buffer

e.g, marshaling  
or serialization

Send message to
destination RPC server

© 2025 Gengrui (Edward) Zhang

Stub generator
• Automate packing function arguments and results into messages

4

Client stub Server stub
Create a message buffer

Wait for reply

Pack needed information
into the message buffer

e.g, marshaling  
or serialization

Unpack the message e.g, unmarshaling  
or deserialization

Send message to
destination RPC server

© 2025 Gengrui (Edward) Zhang

Stub generator
• Automate packing function arguments and results into messages

4

Client stub Server stub
Create a message buffer

Wait for reply Call into invoked function

Pack needed information
into the message buffer

e.g, marshaling  
or serialization

Unpack the message e.g, unmarshaling  
or deserialization

Send message to
destination RPC server

© 2025 Gengrui (Edward) Zhang

Stub generator
• Automate packing function arguments and results into messages

4

Client stub Server stub
Create a message buffer

Wait for reply Call into invoked function

Pack needed information
into the message buffer

e.g, marshaling  
or serialization

Unpack the message e.g, unmarshaling  
or deserialization

Send message to
destination RPC server

Package result and send
the reply

© 2025 Gengrui (Edward) Zhang

Stub generator
• Automate packing function arguments and results into messages

4

Client stub Server stub
Create a message buffer

Wait for reply Call into invoked function

Pack needed information
into the message buffer

e.g, marshaling  
or serialization

Unpack the message e.g, unmarshaling  
or deserialization

Unpack return code
and other arguments

Send message to
destination RPC server

Package result and send
the reply

© 2025 Gengrui (Edward) Zhang

Stub generator
• Automate packing function arguments and results into messages

4

Client stub Server stub
Create a message buffer

Wait for reply Call into invoked function

Pack needed information
into the message buffer

e.g, marshaling  
or serialization

Unpack the message e.g, unmarshaling  
or deserialization

Unpack return code
and other arguments

Return to caller

Send message to
destination RPC server

Package result and send
the reply

© 2025 Gengrui (Edward) Zhang

Run-time library (RTL)

5

RTL handles communication between client and server. E.g.,

© 2025 Gengrui (Edward) Zhang

Run-time library (RTL)

• Naming

• E.g., hostnames and port numbers provided by internet protocols

5

RTL handles communication between client and server. E.g.,

https://grpc.io/

© 2025 Gengrui (Edward) Zhang

Run-time library (RTL)

• Naming

• E.g., hostnames and port numbers provided by internet protocols

• Transport-level protocol

• E.g., TCP (e.g., gRPC) and UDP

5

RTL handles communication between client and server. E.g.,

https://grpc.io/

© 2025 Gengrui (Edward) Zhang

Run-time library (RTL)

• Naming

• E.g., hostnames and port numbers provided by internet protocols

• Transport-level protocol

• E.g., TCP (e.g., gRPC) and UDP

• Timing

5

RTL handles communication between client and server. E.g.,

https://grpc.io/

© 2025 Gengrui (Edward) Zhang

Run-time library (RTL)

• Naming

• E.g., hostnames and port numbers provided by internet protocols

• Transport-level protocol

• E.g., TCP (e.g., gRPC) and UDP

• Timing
• Large arguments (larger than a single packet)

• E.g., fragmentation (sender) and reassembly (receiver)

5

RTL handles communication between client and server. E.g.,

https://grpc.io/

© 2025 Gengrui (Edward) Zhang 6

Client Server

© 2025 Gengrui (Edward) Zhang 6

Client Server

E.g.,

Call(“remote func”, args, &reply)RPC call

© 2025 Gengrui (Edward) Zhang 6

Client Server

E.g.,

Call(“remote func”, args, &reply)RPC call

Receive request
and start procedure

Procedure done;
send reply

E.g., func(args, &reply)

© 2025 Gengrui (Edward) Zhang 6

Client Server

E.g.,

reply = X

E.g.,

Call(“remote func”, args, &reply)RPC call

Receive request
and start procedure

Procedure done;
send reply

E.g., func(args, &reply)

© 2025 Gengrui (Edward) Zhang 6

Client Server

E.g.,

reply = X

E.g.,

Call(“remote func”, args, &reply)RPC call

Get result from
RPC call

Receive request
and start procedure

Procedure done;
send reply

E.g., func(args, &reply)

© 2025 Gengrui (Edward) Zhang 7

Demo
client.go server.go

go run client.go go run server.go

© 2025 Gengrui (Edward) Zhang 8

Today’s outline

Remote procedure calls (RPCs)
Raft
Log replication
Leader election

© 2025 Gengrui (Edward) Zhang

State machine replication (SMR)

9

Clients Service

C1

C2

Abstraction of
SMR services

SMR is a replication service where a set
of servers compute identical copies of
the same state

Recall properties of consensus

© 2025 Gengrui (Edward) Zhang

State machine replication (SMR)

9

Clients Service

C1

C2

Abstraction of
SMR services

SMR is a replication service where a set
of servers compute identical copies of
the same state

Recall properties of consensus

Safety: No two correct nodes decide
differently

Liveness: Nodes eventually decide

© 2025 Gengrui (Edward) Zhang

Raft
• Published by Diego Ongaro et al. (from Stanford) and received Best Paper

Award at 2014 USENIX Annual Technical Conference

10

© 2025 Gengrui (Edward) Zhang

Raft
• Published by Diego Ongaro et al. (from Stanford) and received Best Paper

Award at 2014 USENIX Annual Technical Conference
• Raft is a strong leader-based consensus algorithm

• More understandable than Paxos (alleged)

• Only one leader at any time

• Tolerates non-Byzantine failures

• E.g., server crash, packet loss, duplication, and reordering

• Numerous applications

• File systems, databases, cloud computing

10

© 2025 Gengrui (Edward) Zhang

Raft basics #1: server roles/states
• Recall server roles in Paxos

• Proposer, acceptor, and learner

• A server can have multiple roles at the same time

11

© 2025 Gengrui (Edward) Zhang

Raft basics #1: server roles/states
• Recall server roles in Paxos

• Proposer, acceptor, and learner

• A server can have multiple roles at the same time

• In Raft, servers may have three roles:

• Leader, follower, and candidate

• A server can operate as only one role at any given time

• Under normal operation, there is one leader and other servers operate

as followers

11

© 2025 Gengrui (Edward) Zhang

Raft basics #2: timers and heartbeats
• How often do you check on your family or friends? 

12

© 2025 Gengrui (Edward) Zhang

Raft basics #2: timers and heartbeats
• How often do you check on your family or friends? 

• How do followers know if the “leader is doing well”

• Leader must check on follower in a given period

12

© 2025 Gengrui (Edward) Zhang

Raft basics #2: timers and heartbeats
• How often do you check on your family or friends? 

• How do followers know if the “leader is doing well”

• Leader must check on follower in a given period

• Each follower uses a timer to monitor the “health” of the leader

• Timer keeps counting down until follower receives a heartbeat
• Otherwise, timer expires, follower starts leader election

12

© 2025 Gengrui (Edward) Zhang

Raft basics #2: timers and heartbeats
• How often do you check on your family or friends? 

• How do followers know if the “leader is doing well”

• Leader must check on follower in a given period

• Each follower uses a timer to monitor the “health” of the leader

• Timer keeps counting down until follower receives a heartbeat
• Otherwise, timer expires, follower starts leader election

• Leader sends periodic heartbeats to reset followers’ timers

• Heartbeat intervals (e.g., 50ms) << timer timeouts (e.g., 1-2s)

12

© 2025 Gengrui (Edward) Zhang

Raft basics #3: terms
• Time is divided into terms, which

increase monotonically

• Recall Lamport/logical clocks

13

© 2025 Gengrui (Edward) Zhang

Raft basics #3: terms
• Time is divided into terms, which

increase monotonically

• Recall Lamport/logical clocks

• Terms are a local variable and act as
logical clocks

• It does not increase for all events

• Primarily used for leader election

13

© 2025 Gengrui (Edward) Zhang

Raft basics #3: terms
• Time is divided into terms, which

increase monotonically

• Recall Lamport/logical clocks

• Terms are a local variable and act as
logical clocks

• It does not increase for all events

• Primarily used for leader election

• A server, regardless of its operating
role, always sync up to a higher term

13

© 2025 Gengrui (Edward) Zhang

Raft: log replication

14

Clients Service

C1

C2

• S1 is leader; others are followers

• Leader issues AppendEntriesRPC

A

B

AppendEntries RPC

S1 S2 S3 S4 S5
Received

Committed

Example 1

© 2025 Gengrui (Edward) Zhang

Raft: log replication
• Strong leadership

• Log entries flow only from the leader to followers

• Followers must synchronize its log according to leader’s log

• Quorum replication

• In a system of servers, consensus is reached when
servers commit

• A minority of slow servers () do not impact overall replication
performance

n = 2f + 1 f + 1

≤ f

15

© 2025 Gengrui (Edward) Zhang

Failures in Raft
• We’ve seen how Raft efficiently replicate log entries under normal case
• Now let’s discuss what will happen under failures

16

© 2025 Gengrui (Edward) Zhang

Failures in Raft
• We’ve seen how Raft efficiently replicate log entries under normal case
• Now let’s discuss what will happen under failures
• Followers fail

• How many followers are allowed to fail?

16

© 2025 Gengrui (Edward) Zhang

Failures in Raft
• We’ve seen how Raft efficiently replicate log entries under normal case
• Now let’s discuss what will happen under failures
• Followers fail

• How many followers are allowed to fail?
• Leader fails

• What do we need from a new leader?

16

© 2025 Gengrui (Edward) Zhang

Failures in Raft
• We’ve seen how Raft efficiently replicate log entries under normal case
• Now let’s discuss what will happen under failures
• Followers fail

• How many followers are allowed to fail?
• Leader fails

• What do we need from a new leader?

16

© 2025 Gengrui (Edward) Zhang

Solution 1: Passive leadership rotation
• Pre-define a leadership schedule

•

• Write an algorithm

leaderID = term mod n

17

© 2025 Gengrui (Edward) Zhang

Solution 1: Passive leadership rotation
• Pre-define a leadership schedule

•

• Pros:

• Simple; easy to implement

• Cons:

• Cannot avoid already crashed

servers

• Cannot avoid slow servers

leaderID = term mod n

18

© 2025 Gengrui (Edward) Zhang

Raft’s leader election

19

• Instead of passively rotate leadership, Raft
enables followers who detect a leader’s failure to
actively campaign for leadership
• Crashed servers will not start a campaign

• Slow servers will not win

© 2025 Gengrui (Edward) Zhang

Raft’s leader election

19

• Instead of passively rotate leadership, Raft
enables followers who detect a leader’s failure to
actively campaign for leadership
• Crashed servers will not start a campaign

• Slow servers will not win

• Properties we need to guarantee:

• At most one leader is elected in a given term

• Elected leader must have most up-to-date

log

• Elected leader must be in the highest term

© 2025 Gengrui (Edward) Zhang

Raft’s leader election

20

RequestVote RPC
Upon a timeout // timer resets and keeps going

1. Transition from follower to candidate

2. Increment term

3. Issue RequestVote RPCs

4. Vote for itself

 // wait for a majority of votes

5. Majority of votes received before timeout?  

 become new leader : go back to 1. and repeat

© 2025 Gengrui (Edward) Zhang

Raft’s leader election

20

RequestVote RPC
Upon a timeout // timer resets and keeps going

1. Transition from follower to candidate

2. Increment term

3. Issue RequestVote RPCs

4. Vote for itself

 // wait for a majority of votes

5. Majority of votes received before timeout?  

 become new leader : go back to 1. and repeat

Discovers current leader or higher term?

Go back to follower

© 2025 Gengrui (Edward) Zhang

Voters: how should I vote for a candidate?

21

A server votes for the candidate if

1. Candidate’s term its own term

2. It has not voted yet in this term

3. Candidate’s log is at least as up-to-date as its log

≥

© 2025 Gengrui (Edward) Zhang 22

Example 1

Upon a timeout // timer resets and keeps going

1. Transition from follower to candidate

2. Increment term

3. Issue RequestVote RPCs

4. Vote for itself

 // wait for a majority of votes

5. Majority of votes received before timeout?  

 become new leader : go back to 1. and repeat

A server votes for the candidate if

1. Candidate’s term its own term

2. It has not voted yet in this term

3. Candidate’s log is at least as up-to-date as its log

≥

term 1

© 2025 Gengrui (Edward) Zhang 23

Example 2

Upon a timeout // timer resets and keeps going

1. Transition from follower to candidate

2. Increment term

3. Issue RequestVote RPCs

4. Vote for itself

 // wait for a majority of votes

5. Majority of votes received before timeout?  

 become new leader : go back to 1. and repeat

A server votes for the candidate if

1. Candidate’s term its own term

2. It has not voted yet in this term

3. Candidate’s log is at least as up-to-date as its log

≥

term 1

© 2025 Gengrui (Edward) Zhang

Summary
• Raft operates in a succession of terms

• Leader election

• Replication

• Raft is fast and efficient

• Under normal operation, consensus is achieved by one round of RPCs

• Strong leadership: followers synchronize to leader

• Leader election mechanism allows servers to proactively campaign for

leadership

24

© 2025 Gengrui (Edward) Zhang 25

Worksheet

