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My research is rooted Iin distributed systems,
powering and advancing Al, Blockchains, Cloud
computing, and Database systems

* Al/Agentic systems

 Blockchains
https://www.gengruizhang.com/ . cloud computing

e Distributed databases
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Who am 1?

Al alignment Decentralized Al
LLM Vectorization ML fairness
Distributed ML Al-drlven Blockchains
Systems . Y
e AL onsensus algorithms
Distributed Byzantine fault
Systems tolerance
bt Consistency models
Sky computing ou D
: atabases
Computing
SLA Vector DB
. Cloud DBMS
- Data governance
https://www.gengruizhang.com/ s Al :

Distributed transactions
Task scheduling
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How about you?

=
E.%j

Operating systems Databases Computer networking

© 2025 Gengrui (Edward) Zhang



Course outline

From Week 1 to Week 6, we will learn some fundamental concepts and
designs of distributed systems. We will especially focus on consensus
algorithms and fault tolerance, which pillars blockchain applications

Starting Week 6, we will discuss research papers. Each lecture will include
two or three papers followed by discussion.

Around Week 6 (subject to change), course projects will start with initial
proposal presentations. There will also be midterm progress presentations
and final project presentations with demos.

This course Is a discussion-based course! Participation is important!
Questions are always welcome! You will learn system design trade-offs
through the discussions!
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Grading scheme

 Presentations and deliverables (30%)
* In-class presentation
o Slides
* Participation and discussion (10%)
 Course project (60%)
 Proposal
* Progress report
* Final project presentation and demo

* Final report
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Reading papers
Is a skKill

Get research

Ideas
. ' V4
V4 N\
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Why read papers?

Employ the state of
the art



Presentation guidelines

 You may team up with another student (optional)

* Pick a paper from the paper list (appeared on course weekly schedule)
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Presentation guidelines

 You may team up with another student (optional)
* Pick a paper from the paper list (appeared on course weekly schedule)

 Each presentation should be around 30-35 minutes (20-25 slides),
followed by 20-30 minutes of Q&A

o All students are expected to participate in the Q&A (participation and
discussion)
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Presentation guidelines

You may team up with another student (optional)
Pick a paper from the paper list (appeared on course weekly schedule)

Each presentation should be around 30-35 minutes (20-25 slides),
followed by 20-30 minutes of Q&A

o All students are expected to participate in the Q&A (participation and
discussion)

You must upload your slides on Moodle at least 24 hours before your
presentation. Your slides will be made available to the class
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Presentation guidelines

* |ntroduce background and motivation: why the problem is important?
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Presentation guidelines

* |ntroduce background and motivation: why the problem is important?

* Present the design
* Design overview: provide a high-level summary of proposed approach
* Design details: dive deeper into the specific mechanisms

e Use at least two examples to illustrate how the proposed approach works
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Presentation guidelines

* |ntroduce background and motivation: why the problem is important?
* Present the design
* Design overview: provide a high-level summary of proposed approach
* Design details: dive deeper into the specific mechanisms
e Use at least two examples to illustrate how the proposed approach works
* Discuss implementation and evaluation
 Experimental setup: what’s the environment, testbed, workloads, benchmark, etc?

* Results: summarize key findings
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Presentation guidelines

Introduce background and motivation: why the problem is important?

Present the design

* Design overview: provide a high-level summary of proposed approach

* Design details: dive deeper into the specific mechanisms

e Use at least two examples to illustrate how the proposed approach works
Discuss implementation and evaluation

 Experimental setup: what’s the environment, testbed, workloads, benchmark, etc?
* Results: summarize key findings

Discuss at least three strong and weak points of the paper
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Course project

e Suggested topics will be provided
 Four major components:
 Proposal (2 pages max, including references) + Presentation (5 minutes)
 Tentative schedule: Week 5
* Progress report (Presentation)
* Final presentation with demos

e Submit final project report (6 pages max, including references)
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Today’s Outline

DS Fundamentals

DS Example: Key-value store
Time in DS



Today’s Outline

DS Fundamentals



Why build a distributed system?

* Consider watching Netflix

* |f a server goes down, what should we expect?
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Why build a distributed system?

* Centralized system is simpler in all regards

* Local memory, storage
e Failure model
e Maintenance

 Data security

S,

Centralized Distributed

System
ii!\ /ﬁ!
ﬂ.!—/\—ﬂ!
X 3
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Why build a distributed system?

But ...

* Vertical scaling costs more than horizontal scaling
* Avallability and redundancy

* Single point of failure

 Many resources are inherently distributed

 Many resources used in a shared fashion
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Distributed vs. Parallel systems

o Parallel systems/computing

 Multiple processors/cores work on
different parts of the same task
simultaneously. These processors
are usually part of a single machine
or a tightly-coupled cluster.

e Shared memory or tightly-
coupled processors

* E.g, high-performance computing
(HPC), and graphics processing
(e.g., GPUs)
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Distributed vs. Parallel systems

o Parallel systems/computing

* Distributed systems/computing

* Multiple processors/cores work on * Multiple independent machines
different parts of the same task (nodes) work together, connected
simultaneously. These processors by a network and can be
are usually part of a single machine geographically dispersed

or a tightly-coupled cluster.

e Shared memory or tightly-
coupled processors

* Independent machines (nodes)
communicate over message

passing

* E.g, high-pertormance computing  E.g., cloud computing, blockchains,

(HPC), and graphics processing
(e.g., GPUs)

and distributed databases
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Distributed system definitions & views

* A distributed system is a system that is comprised of several physically
disjoint compute resources interconnected by a network

) e Peer-to-peer
Map Reduce o= o=wwm  (Bitcoin, BitTorrent)
(Hadoop) o— o—
Network
— "\ —_—=
o— s, o
| o= - e—ww)  World Wide Web
Google infrastructure =

(BigTable) o—um
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Other definitions & views

* A distributed system is one in which hardware or software components
located at networked computers communicate and coordinate their

actions only by passing messages

— By Coulouris et al.

* A distributed system is a collection of independent computers that
appears to its users as a single coherent system

— By Tanenbaum & van Steen. , :
Focus on practical perspective; we

do not need rigorously formalized
definitions or binary precisions

© 2025 Gengrui (Edward) Zhang
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Terminology

e Strive to use the term node or server to refer to a physically separable
computing node in our systems
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Terminology

e Strive to use the term node or server to refer to a physically separable
computing node in our systems

e Other often synonymously used terms

* Process, client (?), server, machine, container, ...
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Terminology

Strive to use the term node or server to refer to a physically separable
computing node in our systems

Other often synonymously used terms
* Process, client (?), server, machine, container, ...

Strive to use the term message or value to refer to the unit of
communication among nodes
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Terminology

Strive to use the term node or server to refer to a physically separable
computing node in our systems

Other often synonymously used terms
* Process, client (?), server, machine, container, ...

Strive to use the term message or value to refer to the unit of
communication among nodes

Other often synonymously used terms

* Packet(s), communication, data, RPC, ...
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Terminology

Strive to use the term node or server to refer to a physically separable
computing node in our systems

Other often synonymously used terms
* Process, client (?), server, machine, container, ...

Strive to use the term message or value to refer to the unit of
communication among nodes

Other often synonymously used terms
* Packet(s), communication, data, RPC, ...

It Is not just us, It’s the literature and who you talk to

© 2025 Gengrui (Edward) Zhang
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Characteristics of distributed systems

* Reliable

* Fault-tolerant

* Highly available
 Recoverable

* Consistent

* Scalable Many of the characteristics still

* Predictable performance pose significant challenges in

cel
e Secure theory and practice!
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Reliability

* Reliability means that a system can continue to operate correctly over
time without unexpected failures. It measures how long a system can
consistently perform its intended functions.

* Rarely fails

 When it does fail, it does so gracefully (doesn't lose data or crash
unexpectedly)
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Reliability

* Reliability means that a system can continue to operate correctly over
time without unexpected failures. It measures how long a system can
consistently perform its intended functions.

* Rarely fails

 When it does fail, it does so gracefully (doesn't lose data or crash
unexpectedly)

* Reliability = No data loss or corruption

© 2025 Gengrui (Edward) Zhang

20



Avallability

* Avallability means that a system is accessible and operational when you
need it. A system is considered available if users can successfully make
requests and get responses within the expected time.

© 2025 Gengrui (Edward) Zhang
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Avallability

* Avallability means that a system is accessible and operational when you

need it. A system is considered available if users can successfully make
requests and get responses within the expected time.

 Examples:

A website is available if users can visit it and get a response.

e If a server crashes but a backup takes over, the system remains available.
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Avallability

* Avallability means that a system is accessible and operational when you

need it. A system is considered available if users can successfully make
requests and get responses within the expected time.

 Examples:

A website is available if users can visit it and get a response.

e If a server crashes but a backup takes over, the system remains available.

* Avallability is often expressed as a percentage of uptime:
Uptime

. Availability = —— X 100
Total time
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Avallability

* Avallability means that a system is accessible and operational when you
need it. A system is considered available if users can successfully make
requests and get responses within the expected time.

 Examples:

A website is available if users can visit it and get a response.

e If a server crashes but a backup takes over, the system remains available.

* Avallability is often expressed as a percentage of uptime:

. Avalilability =

Uptime

Total time

99.9% available /year -> down time: 8.76 hours

x 100 99.99% available /year -> down time: 562.6 minutes
99.999% available /year -> down time: 5.26 minutes
(Five nines)
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Related Disciplines

Networking Databases

e Layers, protocols, TCP/IP e Data management

e |atency e Transactions
e Communication e Consistency

Security Parallel computing

e Threats, defenses e Concurrency

* Privacy, encryption e Massively parallel, HPC
e NUMA, UMA
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Today’s Outline

DS Example: Key-value store



Distributed systems by examples

Massively scalable key-value stores



Key-value store

A key-value store, or key-value database, Is a type of data storage
system that organizes information as a collection of key-value pairs.
Each key serves as a unique identifier, while the corresponding value
contains the associated data or its location.

1 key_value_store = {}

2

3 key_value_store[ "name"]
4

5 print("Name:", key_value_store["name"])

"Edward"

© 2025 Gengrui (Edward) Zhang
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Key-value store

A key-value store, or key-value database, Is a type of data storage
system that organizes information as a collection of key-value pairs.
Each key serves as a unique identifier, while the corresponding value
contains the associated data or its location.

1 key_value_store = {}
2
3 key_value_store["'name"] = "Edward"

4
5 print("Name:", key_value_store[ "name"])

1 class Person:

2 def __init__(self, name, title):

3 self.name = name

4 self.title = title

5

o def __str__(self):

/ return f"Name: {self.name}, Title: {self.title}"
8

9 key_value_store = {}

10

11 key_value_store["personl”] = Person("Edward"”, "Professor™)
12

13 print("Personl details:", key_value_store["personl”])

14

15 print("Personl's name:", key_value_store["personl”].name)

16 print("Personl's title:", kex_value_store["personl"].title)

© 2025 Gengrui (Edward) Zhang
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What are key-value stores?

Container for key-value pairs (databases)

Distributed, multi-component, systems

NoSQL semantics (hon-relational)

Application

KV-stores offer simpler guery semantics
In exchange for increased scalability, speed
avalilability, and flexibility

DISK DISK

DISK

Data model not new

& NoDE

Slgnite
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Students Table

Activities Table

DBMS (SQL)

Student [D* qeeet TD* | Activity* | Cost
John Smith 084 084 | Swimming | $17
Jane Bloggs 100 084 | Tenns $36
John Smith 182 100 | Squash $40
Mark Antony | 219 100 | Swimming $17
182 | Tennis $36
219 | Golf §47
219 | Swimming | $15
219 | Squash $40

Relational data schema

Data types

Foreign keys
Full SQL support

Key-value store

o e

John Smith {Activity:Name=
Swimming}

Jane Bloggs {Activity:Cost=57}

Mark Anthony {ID=219}

e No data schema
» Raw byte access
e No relations

e Single-row operations

© 2025 Gengrui (Edward) Zhang
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 Today’s internet applications
 Huge amounts of stored data
 Huge number of Internet users
 Frequent updates
* Fast retrieval of information
 Rapidly changing data definitions

e Ever more users, ever more data

Why are key-value stores needed?

& B

COLLECTION STORAGE

L

NETWORK R%*
BIG DATA
CLOUD /\ /Lé

TECHNOLOGY
ANALYSIS
il
".I;II:// 7, /"./
v

VISUALIZATION VOLUME
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Why are key-value stores needed?

* Horizontal scalability
 User growth, traffic patterns change
 Adapt to number of requests, data size
* Performance
* High speed for single-record read and write operations
* Flexibility
 Adapt to changing data definitions
* Reliablility

* Avallability and geo-distribution

© 2025 Gengrui (Edward) Zhang
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Key-value store client interface

 Main operations

o Write/update: put (key, value)
 Read: get (key)

e Delete: delete (key)

© 2025 Gengrui (Edward) Zhang
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Key-value store client interface

 Main operations
o Write/update: put (key, value)
 Read: get (key)

e Delete: delete (key)

» Usually no aggregation, no table joins, no transactions!

« Some KV stores support transactions by implementing features
traditionally found in relational databases, such as atomic operations,
iIsolation levels, and multi-version concurrency control (MVCC)

© 2025 Gengrui (Edward) Zhang
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 Apache Cassandra
 Redis

 Amazon Dynamo

Key-value store In practice

* BigTable by Google

* LevelDB by Google GO gle
 RocksDB by Meta // APAC H E

* Apache HBase m Met(]
vahoo/

amMaZon

e Yahoo! PNUTS



Common elements of key-value stores

» Failure detection, failure recovery
 Crash, omission, timing
* Replication
e Store and manage multiple copies of data
 Memory store, write ahead log (WAL)
 Keep data in memory for fast access
* \ersioning (time)
o Store different versions of data

 Timestamping

© 2025 Gengrui (Edward) Zhang
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Today’s Outline

Time in DS



Time In distributed systems

* |In distributed systems, we require:
 Coordination between nodes: must agree on certain things

 High degree of parallelism: nodes should work independently to make
progress

© 2025 Gengrui (Edward) Zhang
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Time In distributed systems

* |In distributed systems, we require:
 Coordination between nodes: must agree on certain things

 High degree of parallelism: nodes should work independently to make
progress

 Time gives us:
 Point of reference every machine knows how to keep track of

 Without need for explicit communication

© 2025 Gengrui (Edward) Zhang
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Why time is important? (Practically speaking)

* Distributed gaming — who grabbed an object first?
 Markets, auctions, trading — who issued order first?

* Multimedia synchronization for real-time
teleconferencing

e Target tracking, air traffic control, location positioning

Time tells us the order of events

© 2025 Gengrui (Edward) Zhang
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Ordering observation

1. If two events occurred at the same process p; (i = 1,2,---, N), then they
occurred in the order in which p; observes them; this order is denoted by
the symbol —;

» E.g., a —; b, meaning p;, observes that a happened before b

2. Whenever a message is sent between processes, the event of sending
the message occurred before the event of receiving the message

© 2025 Gengrui (Edward) Zhang
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Happend-before vs. concurrent

From the ordering observation, we can generalize happend-before relation,
denoted by —, as follows:

1. If A processp;:a =, b,thena = b

2. For any message m, send(m) — receive(m)

3. Ifa, b, and c are events suchthata — band b — ¢,thena — ¢

© 2025 Gengrui (Edward) Zhang
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Happend-before vs. concurrent

From the ordering observation, we can generalize happend-before relation,
denoted by —, as follows:

1. If A processp;:a =, b,thena = b

2. For any message m, send(m) — receive(m)

3. Ifa, b, and c are events suchthata — band b — ¢,thena — ¢

D1

b I
17 . Physical
time
,03 o

e f

v @

© 2025 Gengrui (Edward) Zhang

37



Happend-before vs. concurrent

From the ordering observation, we can generalize happend-before relation,
denoted by —, as follows:

1. If A processp;:a =, b,thena = b

2. For any message m, send(m) — receive(m)

3.

D1

If a, b, and ¢ are events suchthata — band b — ¢,thena — ¢

v @

|

. Physical

N

time

f

L

a and e occur at different processes

and there is no chain of messages
iIntervening between them. We say that

such as a and e that are not ordered
by — are concurrent and write a| | e

© 2025 Gengrui (Edward) Zhang
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Logical clocks

* Logical clocks, invented by Lamport [1978], numerically capture
happened-before relation. A logical clock, also called Lamport clock, is a
monotonically increasing software counter.

1. L;is incremented before each event is issued at process p, : L, = L. + 1

2. Two substeps:

2.1. When a process p; sends a message mi, it piggybacks on m the

value t = L,

2.2.0n receiving (m, 1), a process p; computes L; = max(L;, 7) and then

applies Step 1 before timestamping the event receive(m).

© 2025 Gengrui (Edward) Zhang
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Logical clocks

* Logical clocks, invented by Lamport [1978], numerically capture
happened-before relation. A logical clock, also called Lamport clock, is a
monotonically increasing software counter.

1. L;is incremented before each event is issued at process p, : L, = L. + 1

. Can be any positive
2. Two substeps: value

2.1. When a process p; sends a message mi, it piggybacks on m the

value t = L,

2.2.0n receiving (m, 1), a process p; computes L; = max(L;, 7) and then

applies Step 1 before timestamping the event receive(m).
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What are the Lamport timestamps for following events?

P ® >
a b ITH
1), _ Physical
time
,03 o .

e f
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What are the Lamport timestamps for following events?

,01 o >
a b ITH
3 4
1), _ Physical
time
C a m
1 5
,03 o >
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Logical clocks

* We can easily find that:

e Ifa — b, then L(a) < L(b)

© 2025 Gengrui (Edward) Zhang
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Logical clocks

* We can easily find that:
e Ifa — b, then L(a) < L(b)
* |s the converse true?

e If L(a) < L(b), we cannot infer thata — b

 In our example, L(b) > L(e),but b||e

© 2025 Gengrui (Edward) Zhang
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Vector clocks

 Mattern [1989] and Fidge [1991] developed vector clocks to overcome
the shortcoming of Lamport’s clocks

» A vector clock for a system of /V processes is an array of /NV integers

© 2025 Gengrui (Edward) Zhang
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Vector clocks

 Mattern [1989] and Fidge [1991] developed vector clocks to overcome
the shortcoming of Lamport’s clocks

» A vector clock for a system of /V processes is an array of /NV integers
 Each process keeps its own vector clock, V;, to timestamp local event.
1. Initially, V| j] =0, fori,j = 1,2,...,N
2. Just before p. timestamps an event, it sets V[i] = V[i] + 1
3. p;includes the value t = V in every message it sends
4. When p; receives a timestamp 7 in a message, it sets

Vi[j] = max(Vi[/l,t[j]) forj = 1,2,...,N

© 2025 Gengrui (Edward) Zhang
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Vector clocks

 Mattern [1989] and Fidge [1991] developed vector clocks to overcome
the shortcoming of Lamport’s clocks

» A vector clock for a system of /V processes is an array of /NV integers
 Each process keeps its own vector clock, V;, to timestamp local event.
1. Initially, V| j] =0, fori,j = 1,2,...,N
2. Just before p. timestamps an event, it sets V[i] = V[i] + 1
3. p;includes the value t = V in every message it sends
4. When p; receives a timestamp 7 in a message, it sets

Vi[j] = max(Vi[/l,t[j]) forj = 1,2,...,N

Also called merge operations

© 2025 Gengrui (Edward) Zhang

42



What are vector timestamps for following events?

P ® >
a b ITH
7). _ Physical
time
,03 o >

e f
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What are vector timestamps for following events?

We may compare vector timestamps as follows:

V=V iff V[j]=V'[j] forj=1,2....N

(1,0,0) (2,0,0)

Jo ® o V<V iff V[j1<V'[j] forj=1,2...,N
a b ITH

V<V iff VSV AVZV

2,1,0) (2,2,0) _ Physical

P2 ® .

c N time
,03 o . . .
o f With vector timestamps,

(0,0,1) (2,2,2) e Ifa — b, then V(a) < V(b)
e If V(a) < V(b),thena — b
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Worksheet
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