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Who am I?
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My research is rooted in distributed systems, 
powering and advancing AI, Blockchains, Cloud 
computing, and Database systems

• AI/Agentic systems

• Blockchains

• Cloud computing

• Distributed databases
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How about you?
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Operating systems Databases Computer networking



© 2025 Gengrui (Edward) Zhang

Course outline
• From Week 1 to Week 6, we will learn some fundamental concepts and 

designs of distributed systems. We will especially focus on consensus 
algorithms and fault tolerance, which pillars blockchain applications


• Starting Week 6, we will discuss research papers. Each lecture will include 
two or three papers followed by discussion.


• Around Week 6 (subject to change), course projects will start with initial 
proposal presentations. There will also be midterm progress presentations 
and final project presentations with demos.


• This course is a discussion-based course! Participation is important! 
Questions are always welcome! You will learn system design trade-offs 
through the discussions!

4
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Grading scheme
• Presentations and deliverables (30%) 

• In-class presentation


• Slides


• Participation and discussion (10%) 

• Course project (60%) 

• Proposal


• Progress report


• Final project presentation and demo


• Final report

5
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Why read papers?
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Presentation guidelines
• You may team up with another student (optional)

• Pick a paper from the paper list (appeared on course weekly schedule)
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Presentation guidelines
• You may team up with another student (optional)

• Pick a paper from the paper list (appeared on course weekly schedule)

• Each presentation should be around 30-35 minutes (20-25 slides), 
followed by 20-30 minutes of Q&A


• All students are expected to participate in the Q&A (participation and 
discussion)

• You must upload your slides on Moodle at least 24 hours before your 
presentation. Your slides will be made available to the class
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Presentation guidelines
• Introduce background and motivation: why the problem is important?
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Presentation guidelines
• Introduce background and motivation: why the problem is important?

• Present the design


• Design overview: provide a high-level summary of proposed approach


• Design details: dive deeper into the specific mechanisms


• Use at least two examples to illustrate how the proposed approach works

• Discuss implementation and evaluation


• Experimental setup: what’s the environment, testbed, workloads, benchmark, etc?


• Results: summarize key findings

• Discuss at least three strong and weak points of the paper

8



© 2025 Gengrui (Edward) Zhang

Course project
• Suggested topics will be provided


• Four major components:


• Proposal (2 pages max, including references) + Presentation (5 minutes)


• Tentative schedule: Week 5 

• Progress report (Presentation)


• Final presentation with demos


• Submit final project report (6 pages max, including references)

9
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DS Fundamentals 
DS Example: Key-value store 
Time in DS

Today’s Outline
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Why build a distributed system?
• Consider watching Netflix


• If a server goes down, what should we expect?

12

Internet
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Why build a distributed system?
• Centralized system is simpler in all regards


• Local memory, storage


• Failure model


• Maintenance


• Data security

13
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Why build a distributed system?
• But …


• Vertical scaling costs more than horizontal scaling


• Availability and redundancy


• Single point of failure


• Many resources are inherently distributed


• Many resources used in a shared fashion

14
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Distributed vs. Parallel systems
• Parallel systems/computing 

• Multiple processors/cores work on 
different parts of the same task 
simultaneously. These processors 
are usually part of a single machine 
or a tightly-coupled cluster.


• Shared memory or tightly-
coupled processors


• E.g, high-performance computing 
(HPC), and graphics processing 
(e.g., GPUs)

15
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• Distributed systems/computing 

• Multiple independent machines 
(nodes) work together, connected 
by a network and can be 
geographically dispersed


• Independent machines (nodes) 
communicate over message 
passing 

• E.g., cloud computing, blockchains, 
and distributed databases
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Distributed system definitions & views
• A distributed system is a system that is comprised of several physically 

disjoint compute resources interconnected by a network

16

Network

Peer-to-peer 
(Bitcoin, BitTorrent)

World Wide Web 

Map Reduce 
(Hadoop)

Google infrastructure 
(BigTable)
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Other definitions & views
• A distributed system is one in which hardware or software components 

located at networked computers communicate and coordinate their 
actions only by passing messages


— By Coulouris et al. 

• A distributed system is a collection of independent computers that 
appears to its users as a single coherent system 

— By Tanenbaum & van Steen.

17

Focus on practical perspective; we 
do not need rigorously formalized 

definitions or binary precisions
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Terminology
• Strive to use the term node or server to refer to a physically separable 

computing node in our systems
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Terminology
• Strive to use the term node or server to refer to a physically separable 

computing node in our systems

• Other often synonymously used terms


• Process, client (?), server, machine, container, …

• Strive to use the term message or value to refer to the unit of 
communication among nodes

• Other often synonymously used terms


• Packet(s), communication, data, RPC, …

• It is not just us, it’s the literature and who you talk to

18
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Characteristics of distributed systems
• Reliable


• Fault-tolerant


• Highly available


• Recoverable 


• Consistent


• Scalable


• Predictable performance


• Secure

19

Many of the characteristics still 
pose significant challenges in 

theory and practice!
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Reliability
• Reliability means that a system can continue to operate correctly over 

time without unexpected failures. It measures how long a system can 
consistently perform its intended functions.


• Rarely fails


• When it does fail, it does so gracefully (doesn't lose data or crash 
unexpectedly)

20
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Reliability
• Reliability means that a system can continue to operate correctly over 

time without unexpected failures. It measures how long a system can 
consistently perform its intended functions.


• Rarely fails


• When it does fail, it does so gracefully (doesn't lose data or crash 
unexpectedly)

• Reliability = No data loss or corruption
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Availability
• Availability means that a system is accessible and operational when you 

need it. A system is considered available if users can successfully make 
requests and get responses within the expected time.

21
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• If a server crashes but a backup takes over, the system remains available.
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99.9% available /year -> down time: 8.76 hours 
99.99% available /year -> down time: 52.6 minutes 
99.999% available /year -> down time: 5.26 minutes 
(Five nines)
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Related Disciplines

22
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Key-value store
• A key-value store, or key-value database, is a type of data storage 

system that organizes information as a collection of key-value pairs. 
Each key serves as a unique identifier, while the corresponding value 
contains the associated data or its location.

25
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What are key-value stores?
• Container for key-value pairs (databases)


• Distributed, multi-component, systems


• NoSQL semantics (non-relational)


• KV-stores offer simpler query semantics 
in exchange for increased scalability, speed 
availability, and flexibility 

• Data model not new

26
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DBMS (SQL) Key-value store

• Relational data schema


• Data types


• Foreign keys


• Full SQL support

• No data schema


• Raw byte access


• No relations


• Single-row operations
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Why are key-value stores needed?
• Today’s internet applications


• Huge amounts of stored data


• Huge number of Internet users


• Frequent updates


• Fast retrieval of information


• Rapidly changing data definitions


• Ever more users, ever more data

28
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Why are key-value stores needed?
• Horizontal scalability


• User growth, traffic patterns change


• Adapt to number of requests, data size


• Performance


• High speed for single-record read and write operations


• Flexibility


• Adapt to changing data definitions


• Reliability


• Availability and geo-distribution

29
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Key-value store client interface
• Main operations


• Write/update: put(key, value)


• Read: get(key)


• Delete: delete(key)


30
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Key-value store client interface
• Main operations


• Write/update: put(key, value)


• Read: get(key)


• Delete: delete(key)


• Usually no aggregation, no table joins, no transactions!


• Some KV stores support transactions by implementing features 
traditionally found in relational databases, such as atomic operations, 
isolation levels, and multi-version concurrency control (MVCC)

30
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Key-value store in practice
• BigTable by Google


• LevelDB by Google


• RocksDB by Meta


• Apache HBase


• Apache Cassandra


• Redis


• Amazon Dynamo


• Yahoo! PNUTS

31
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Common elements of key-value stores
• Failure detection, failure recovery


• Crash, omission, timing


• Replication


• Store and manage multiple copies of data


• Memory store, write ahead log (WAL)


• Keep data in memory for fast access


• Versioning (time)


• Store different versions of data


• Timestamping

32
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Time in distributed systems
• In distributed systems, we require:


• Coordination between nodes: must agree on certain things


• High degree of parallelism: nodes should work independently to make 
progress

34
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Time in distributed systems
• In distributed systems, we require:


• Coordination between nodes: must agree on certain things


• High degree of parallelism: nodes should work independently to make 
progress

• Time gives us:


• Point of reference every machine knows how to keep track of


• Without need for explicit communication

34
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Why time is important? (Practically speaking)

• Distributed gaming — who grabbed an object first?


• Markets, auctions, trading — who issued order first?


• Multimedia synchronization for real-time 
teleconferencing


• Target tracking, air traffic control, location positioning

35

Time tells us the order of events
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Ordering observation
1. If two events occurred at the same process  , then they 

occurred in the order in which  observes them; this order is denoted by 
the symbol 


• E.g., , meaning  observes that  happened before 


2. Whenever a message is sent between processes, the event of sending 
the message occurred before the event of receiving the message

pi (i = 1,2,⋯, N)
pi

→i

a →i b pi a b

36
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Happend-before vs. concurrent
From the ordering observation, we can generalize happend-before relation, 
denoted by , as follows:


1. If  process  : , then 


2. For any message , 


3. If , , and  are events such that  and , then 

→
∃ pi a →i b a → b

m send(m) → receive(m)
a b c a → b b → c a → c

37
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 and  occur at different processes 
and there is no chain of messages 
intervening between them. We say that 
such as  and  that are not ordered 
by  are concurrent and write 

a e

a e
→ a | |e
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Logical clocks
• Logical clocks, invented by Lamport [1978], numerically capture 

happened-before relation. A logical clock, also called Lamport clock, is a 
monotonically increasing software counter.


1.  is incremented before each event is issued at process  : 


2. Two substeps:

2.1. When a process  sends a message , it piggybacks on  the 

value 


2.2.On receiving , a process  computes  and then 
applies Step 1 before timestamping the event .

Li pi Li = Li + 1

pi m m
t = Li

(m, t) pj Lj = max(Lj, t)
receive(m)

38
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Can be any positive 
value
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What are the Lamport timestamps for following events?

39
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What are the Lamport timestamps for following events?

40

1 2

3 4

1 5
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Logical clocks
• We can easily find that:


• If , then a → b L(a) < L(b)

41
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Logical clocks
• We can easily find that:


• If , then a → b L(a) < L(b)
• Is the converse true?


• If , we cannot infer that 


• In our example, , but 

L(a) < L(b) a → b

L(b) > L(e) b | |e

41
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Vector clocks
• Mattern [1989] and Fidge [1991] developed vector clocks to overcome 

the shortcoming of Lamport’s clocks

• A vector clock for a system of  processes is an array of  integersN N

42
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Vector clocks
• Mattern [1989] and Fidge [1991] developed vector clocks to overcome 

the shortcoming of Lamport’s clocks

• A vector clock for a system of  processes is an array of  integersN N
• Each process keeps its own vector clock, , to timestamp local event.


1. Initially, , for 


2. Just before  timestamps an event, it sets 


3.  includes the value  in every message it sends


4. When  receives a timestamp  in a message, it sets 
 for 

Vi

Vi[ j] = 0 i, j = 1,2,…, N
pi Vi[i] = Vi[i] + 1

pi t = Vi

pi t
Vi[ j] = max(Vi[ j], t[ j]) j = 1,2,…, N

42
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Also called merge operations
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What are vector timestamps for following events?

43
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What are vector timestamps for following events?

44

(1,0,0) (2,0,0)

(2,1,0) (2,2,0)

(0,0,1) (2,2,2)
With vector timestamps,

• If , then 

• If , then 

a → b V(a) < V(b)
V(a) < V(b) a → b



© 2025 Gengrui (Edward) Zhang 45

Worksheet


