
© 2026 Gengrui (Edward) Zhang

COEN6731 Distributed Software Systems

Week 1: Introductions and fundamentals

Gengrui (Edward) Zhang, PhD

Web: gengruizhang.com

http://gengruizhang.com

© 2025 Gengrui (Edward) Zhang

Who am I?

2

https://www.gengruizhang.com/

My research is rooted in distributed systems,
powering and advancing AI, Blockchains, Cloud
computing, and Database systems

• AI/Agentic systems

• Blockchains

• Cloud computing

• Distributed databases

© 2025 Gengrui (Edward) Zhang

Who am I?

2

https://www.gengruizhang.com/

My research is rooted in distributed systems,
powering and advancing AI, Blockchains, Cloud
computing, and Database systems

• AI/Agentic systems

• Blockchains

• Cloud computing

• Distributed databases

© 2025 Gengrui (Edward) Zhang

How about you?

3

Operating systems Databases Computer networking

© 2025 Gengrui (Edward) Zhang

Course outline
• From Week 1 to Week 6, we will learn some fundamental concepts and

designs of distributed systems. We will especially focus on consensus
algorithms and fault tolerance, which pillars blockchain applications

• Starting Week 6, we will discuss research papers. Each lecture will include
two or three papers followed by discussion.

• Around Week 6 (subject to change), course projects will start with initial
proposal presentations. There will also be midterm progress presentations
and final project presentations with demos.

• This course is a discussion-based course! Participation is important!
Questions are always welcome! You will learn system design trade-offs
through the discussions!

4

© 2025 Gengrui (Edward) Zhang

Grading scheme
• Presentations and deliverables (30%)

• In-class presentation

• Slides

• Participation and discussion (10%)

• Course project (60%)

• Proposal

• Progress report

• Final project presentation and demo

• Final report

5

© 2025 Gengrui (Edward) Zhang

Why read papers?

6

© 2025 Gengrui (Edward) Zhang

Presentation guidelines
• You may team up with another student (optional)

• Pick a paper from the paper list (appeared on course weekly schedule)

7

© 2025 Gengrui (Edward) Zhang

Presentation guidelines
• You may team up with another student (optional)

• Pick a paper from the paper list (appeared on course weekly schedule)

• Each presentation should be around 30-35 minutes (20-25 slides),
followed by 20-30 minutes of Q&A

• All students are expected to participate in the Q&A (participation and
discussion)

7

© 2025 Gengrui (Edward) Zhang

Presentation guidelines
• You may team up with another student (optional)

• Pick a paper from the paper list (appeared on course weekly schedule)

• Each presentation should be around 30-35 minutes (20-25 slides),
followed by 20-30 minutes of Q&A

• All students are expected to participate in the Q&A (participation and
discussion)

• You must upload your slides on Moodle at least 24 hours before your
presentation. Your slides will be made available to the class

7

© 2025 Gengrui (Edward) Zhang

Presentation guidelines
• Introduce background and motivation: why the problem is important?

8

© 2025 Gengrui (Edward) Zhang

Presentation guidelines
• Introduce background and motivation: why the problem is important?

• Present the design

• Design overview: provide a high-level summary of proposed approach

• Design details: dive deeper into the specific mechanisms

• Use at least two examples to illustrate how the proposed approach works

8

© 2025 Gengrui (Edward) Zhang

Presentation guidelines
• Introduce background and motivation: why the problem is important?

• Present the design

• Design overview: provide a high-level summary of proposed approach

• Design details: dive deeper into the specific mechanisms

• Use at least two examples to illustrate how the proposed approach works

• Discuss implementation and evaluation

• Experimental setup: what’s the environment, testbed, workloads, benchmark, etc?

• Results: summarize key findings

8

© 2025 Gengrui (Edward) Zhang

Presentation guidelines
• Introduce background and motivation: why the problem is important?

• Present the design

• Design overview: provide a high-level summary of proposed approach

• Design details: dive deeper into the specific mechanisms

• Use at least two examples to illustrate how the proposed approach works

• Discuss implementation and evaluation

• Experimental setup: what’s the environment, testbed, workloads, benchmark, etc?

• Results: summarize key findings

• Discuss at least three strong and weak points of the paper

8

© 2025 Gengrui (Edward) Zhang

Course project
• Suggested topics will be provided

• Four major components:

• Proposal (2 pages max, including references) + Presentation (5 minutes)

• Tentative schedule: Week 5

• Progress report (Presentation)

• Final presentation with demos

• Submit final project report (6 pages max, including references)

9

© 2025 Gengrui (Edward) Zhang

DS Fundamentals
DS Example: Key-value store
Time in DS

Today’s Outline

DS Fundamentals
DS Example: Key-value store
Time in DS

Today’s Outline

© 2025 Gengrui (Edward) Zhang

Why build a distributed system?
• Consider watching Netflix

• If a server goes down, what should we expect?

12

Internet

© 2025 Gengrui (Edward) Zhang

Why build a distributed system?
• Centralized system is simpler in all regards

• Local memory, storage

• Failure model

• Maintenance

• Data security

13

© 2025 Gengrui (Edward) Zhang

Why build a distributed system?
• But …

• Vertical scaling costs more than horizontal scaling

• Availability and redundancy

• Single point of failure

• Many resources are inherently distributed

• Many resources used in a shared fashion

14

© 2025 Gengrui (Edward) Zhang

Distributed vs. Parallel systems
• Parallel systems/computing

• Multiple processors/cores work on
different parts of the same task
simultaneously. These processors
are usually part of a single machine
or a tightly-coupled cluster.

• Shared memory or tightly-
coupled processors

• E.g, high-performance computing
(HPC), and graphics processing
(e.g., GPUs)

15

© 2025 Gengrui (Edward) Zhang

Distributed vs. Parallel systems
• Parallel systems/computing

• Multiple processors/cores work on
different parts of the same task
simultaneously. These processors
are usually part of a single machine
or a tightly-coupled cluster.

• Shared memory or tightly-
coupled processors

• E.g, high-performance computing
(HPC), and graphics processing
(e.g., GPUs)

15

• Distributed systems/computing

• Multiple independent machines
(nodes) work together, connected
by a network and can be
geographically dispersed

• Independent machines (nodes)
communicate over message
passing

• E.g., cloud computing, blockchains,
and distributed databases

© 2025 Gengrui (Edward) Zhang

Distributed system definitions & views
• A distributed system is a system that is comprised of several physically

disjoint compute resources interconnected by a network

16

Network

Peer-to-peer 
(Bitcoin, BitTorrent)

World Wide Web

Map Reduce 
(Hadoop)

Google infrastructure 
(BigTable)

© 2025 Gengrui (Edward) Zhang

Other definitions & views
• A distributed system is one in which hardware or software components

located at networked computers communicate and coordinate their
actions only by passing messages

— By Coulouris et al. 

• A distributed system is a collection of independent computers that
appears to its users as a single coherent system

— By Tanenbaum & van Steen.

17

Focus on practical perspective; we
do not need rigorously formalized

definitions or binary precisions

© 2025 Gengrui (Edward) Zhang

Terminology
• Strive to use the term node or server to refer to a physically separable

computing node in our systems

18

© 2025 Gengrui (Edward) Zhang

Terminology
• Strive to use the term node or server to refer to a physically separable

computing node in our systems

• Other often synonymously used terms

• Process, client (?), server, machine, container, …

18

© 2025 Gengrui (Edward) Zhang

Terminology
• Strive to use the term node or server to refer to a physically separable

computing node in our systems

• Other often synonymously used terms

• Process, client (?), server, machine, container, …

• Strive to use the term message or value to refer to the unit of
communication among nodes

18

© 2025 Gengrui (Edward) Zhang

Terminology
• Strive to use the term node or server to refer to a physically separable

computing node in our systems

• Other often synonymously used terms

• Process, client (?), server, machine, container, …

• Strive to use the term message or value to refer to the unit of
communication among nodes

• Other often synonymously used terms

• Packet(s), communication, data, RPC, …

18

© 2025 Gengrui (Edward) Zhang

Terminology
• Strive to use the term node or server to refer to a physically separable

computing node in our systems

• Other often synonymously used terms

• Process, client (?), server, machine, container, …

• Strive to use the term message or value to refer to the unit of
communication among nodes

• Other often synonymously used terms

• Packet(s), communication, data, RPC, …

• It is not just us, it’s the literature and who you talk to

18

© 2025 Gengrui (Edward) Zhang

Characteristics of distributed systems
• Reliable

• Fault-tolerant

• Highly available

• Recoverable

• Consistent

• Scalable

• Predictable performance

• Secure

19

Many of the characteristics still
pose significant challenges in

theory and practice!

© 2025 Gengrui (Edward) Zhang

Reliability
• Reliability means that a system can continue to operate correctly over

time without unexpected failures. It measures how long a system can
consistently perform its intended functions.

• Rarely fails

• When it does fail, it does so gracefully (doesn't lose data or crash
unexpectedly)

20

© 2025 Gengrui (Edward) Zhang

Reliability
• Reliability means that a system can continue to operate correctly over

time without unexpected failures. It measures how long a system can
consistently perform its intended functions.

• Rarely fails

• When it does fail, it does so gracefully (doesn't lose data or crash
unexpectedly)

• Reliability = No data loss or corruption

20

© 2025 Gengrui (Edward) Zhang

Availability
• Availability means that a system is accessible and operational when you

need it. A system is considered available if users can successfully make
requests and get responses within the expected time.

21

© 2025 Gengrui (Edward) Zhang

Availability
• Availability means that a system is accessible and operational when you

need it. A system is considered available if users can successfully make
requests and get responses within the expected time.

• Examples:

• A website is available if users can visit it and get a response.

• If a server crashes but a backup takes over, the system remains available.

21

© 2025 Gengrui (Edward) Zhang

Availability
• Availability means that a system is accessible and operational when you

need it. A system is considered available if users can successfully make
requests and get responses within the expected time.

• Examples:

• A website is available if users can visit it and get a response.

• If a server crashes but a backup takes over, the system remains available.

• Availability is often expressed as a percentage of uptime:

• Availability =
Uptime

Total time
× 100

21

© 2025 Gengrui (Edward) Zhang

Availability
• Availability means that a system is accessible and operational when you

need it. A system is considered available if users can successfully make
requests and get responses within the expected time.

• Examples:

• A website is available if users can visit it and get a response.

• If a server crashes but a backup takes over, the system remains available.

• Availability is often expressed as a percentage of uptime:

• Availability =
Uptime

Total time
× 100

21

99.9% available /year -> down time: 8.76 hours
99.99% available /year -> down time: 52.6 minutes
99.999% available /year -> down time: 5.26 minutes 
(Five nines)

© 2025 Gengrui (Edward) Zhang

Related Disciplines

22

DS Fundamentals
DS Example: Key-value store
Time in DS

Today’s Outline

Distributed systems by examples
Massively scalable key-value stores

© 2025 Gengrui (Edward) Zhang

Key-value store
• A key-value store, or key-value database, is a type of data storage

system that organizes information as a collection of key-value pairs.
Each key serves as a unique identifier, while the corresponding value
contains the associated data or its location.

25

© 2025 Gengrui (Edward) Zhang

Key-value store
• A key-value store, or key-value database, is a type of data storage

system that organizes information as a collection of key-value pairs.
Each key serves as a unique identifier, while the corresponding value
contains the associated data or its location.

25

© 2025 Gengrui (Edward) Zhang

What are key-value stores?
• Container for key-value pairs (databases)

• Distributed, multi-component, systems

• NoSQL semantics (non-relational)

• KV-stores offer simpler query semantics 
in exchange for increased scalability, speed 
availability, and flexibility

• Data model not new

26

© 2025 Gengrui (Edward) Zhang 27

DBMS (SQL) Key-value store

• Relational data schema

• Data types

• Foreign keys

• Full SQL support

• No data schema

• Raw byte access

• No relations

• Single-row operations

© 2025 Gengrui (Edward) Zhang

Why are key-value stores needed?
• Today’s internet applications

• Huge amounts of stored data

• Huge number of Internet users

• Frequent updates

• Fast retrieval of information

• Rapidly changing data definitions

• Ever more users, ever more data

28

© 2025 Gengrui (Edward) Zhang

Why are key-value stores needed?
• Horizontal scalability

• User growth, traffic patterns change

• Adapt to number of requests, data size

• Performance

• High speed for single-record read and write operations

• Flexibility

• Adapt to changing data definitions

• Reliability

• Availability and geo-distribution

29

© 2025 Gengrui (Edward) Zhang

Key-value store client interface
• Main operations

• Write/update: put(key, value)

• Read: get(key)

• Delete: delete(key)

30

© 2025 Gengrui (Edward) Zhang

Key-value store client interface
• Main operations

• Write/update: put(key, value)

• Read: get(key)

• Delete: delete(key)

• Usually no aggregation, no table joins, no transactions!

• Some KV stores support transactions by implementing features
traditionally found in relational databases, such as atomic operations,
isolation levels, and multi-version concurrency control (MVCC)

30

© 2025 Gengrui (Edward) Zhang

Key-value store in practice
• BigTable by Google

• LevelDB by Google

• RocksDB by Meta

• Apache HBase

• Apache Cassandra

• Redis

• Amazon Dynamo

• Yahoo! PNUTS

31

© 2025 Gengrui (Edward) Zhang

Common elements of key-value stores
• Failure detection, failure recovery

• Crash, omission, timing

• Replication

• Store and manage multiple copies of data

• Memory store, write ahead log (WAL)

• Keep data in memory for fast access

• Versioning (time)

• Store different versions of data

• Timestamping

32

DS Fundamentals
DS Example: Key-value store
Time in DS

Today’s Outline

© 2025 Gengrui (Edward) Zhang

Time in distributed systems
• In distributed systems, we require:

• Coordination between nodes: must agree on certain things

• High degree of parallelism: nodes should work independently to make
progress

34

© 2025 Gengrui (Edward) Zhang

Time in distributed systems
• In distributed systems, we require:

• Coordination between nodes: must agree on certain things

• High degree of parallelism: nodes should work independently to make
progress

• Time gives us:

• Point of reference every machine knows how to keep track of

• Without need for explicit communication

34

© 2025 Gengrui (Edward) Zhang

Why time is important? (Practically speaking)

• Distributed gaming — who grabbed an object first?

• Markets, auctions, trading — who issued order first?

• Multimedia synchronization for real-time
teleconferencing

• Target tracking, air traffic control, location positioning

35

Time tells us the order of events

© 2025 Gengrui (Edward) Zhang

Ordering observation
1. If two events occurred at the same process , then they

occurred in the order in which observes them; this order is denoted by
the symbol

• E.g., , meaning observes that happened before

2. Whenever a message is sent between processes, the event of sending
the message occurred before the event of receiving the message

pi (i = 1,2,⋯, N)
pi

→i

a →i b pi a b

36

© 2025 Gengrui (Edward) Zhang

Happend-before vs. concurrent
From the ordering observation, we can generalize happend-before relation,
denoted by , as follows:

1. If process : , then

2. For any message ,

3. If , , and are events such that and , then

→
∃ pi a →i b a → b

m send(m) → receive(m)
a b c a → b b → c a → c

37

© 2025 Gengrui (Edward) Zhang

Happend-before vs. concurrent
From the ordering observation, we can generalize happend-before relation,
denoted by , as follows:

1. If process : , then

2. For any message ,

3. If , , and are events such that and , then

→
∃ pi a →i b a → b

m send(m) → receive(m)
a b c a → b b → c a → c

37

© 2025 Gengrui (Edward) Zhang

Happend-before vs. concurrent
From the ordering observation, we can generalize happend-before relation,
denoted by , as follows:

1. If process : , then

2. For any message ,

3. If , , and are events such that and , then

→
∃ pi a →i b a → b

m send(m) → receive(m)
a b c a → b b → c a → c

37

 and occur at different processes
and there is no chain of messages
intervening between them. We say that
such as and that are not ordered
by are concurrent and write

a e

a e
→ a | |e

© 2025 Gengrui (Edward) Zhang

Logical clocks
• Logical clocks, invented by Lamport [1978], numerically capture

happened-before relation. A logical clock, also called Lamport clock, is a
monotonically increasing software counter.

1. is incremented before each event is issued at process :

2. Two substeps:

2.1. When a process sends a message , it piggybacks on the

value

2.2.On receiving , a process computes and then
applies Step 1 before timestamping the event .

Li pi Li = Li + 1

pi m m
t = Li

(m, t) pj Lj = max(Lj, t)
receive(m)

38

© 2025 Gengrui (Edward) Zhang

Logical clocks
• Logical clocks, invented by Lamport [1978], numerically capture

happened-before relation. A logical clock, also called Lamport clock, is a
monotonically increasing software counter.

1. is incremented before each event is issued at process :

2. Two substeps:

2.1. When a process sends a message , it piggybacks on the

value

2.2.On receiving , a process computes and then
applies Step 1 before timestamping the event .

Li pi Li = Li + 1

pi m m
t = Li

(m, t) pj Lj = max(Lj, t)
receive(m)

38

Can be any positive
value

© 2025 Gengrui (Edward) Zhang

What are the Lamport timestamps for following events?

39

© 2025 Gengrui (Edward) Zhang

What are the Lamport timestamps for following events?

40

1 2

3 4

1 5

© 2025 Gengrui (Edward) Zhang

Logical clocks
• We can easily find that:

• If , then a → b L(a) < L(b)

41

© 2025 Gengrui (Edward) Zhang

Logical clocks
• We can easily find that:

• If , then a → b L(a) < L(b)
• Is the converse true?

• If , we cannot infer that

• In our example, , but

L(a) < L(b) a → b

L(b) > L(e) b | |e

41

© 2025 Gengrui (Edward) Zhang

Vector clocks
• Mattern [1989] and Fidge [1991] developed vector clocks to overcome

the shortcoming of Lamport’s clocks

• A vector clock for a system of processes is an array of integersN N

42

© 2025 Gengrui (Edward) Zhang

Vector clocks
• Mattern [1989] and Fidge [1991] developed vector clocks to overcome

the shortcoming of Lamport’s clocks

• A vector clock for a system of processes is an array of integersN N
• Each process keeps its own vector clock, , to timestamp local event.

1. Initially, , for

2. Just before timestamps an event, it sets

3. includes the value in every message it sends

4. When receives a timestamp in a message, it sets
 for

Vi

Vi[j] = 0 i, j = 1,2,…, N
pi Vi[i] = Vi[i] + 1

pi t = Vi

pi t
Vi[j] = max(Vi[j], t[j]) j = 1,2,…, N

42

© 2025 Gengrui (Edward) Zhang

Vector clocks
• Mattern [1989] and Fidge [1991] developed vector clocks to overcome

the shortcoming of Lamport’s clocks

• A vector clock for a system of processes is an array of integersN N
• Each process keeps its own vector clock, , to timestamp local event.

1. Initially, , for

2. Just before timestamps an event, it sets

3. includes the value in every message it sends

4. When receives a timestamp in a message, it sets
 for

Vi

Vi[j] = 0 i, j = 1,2,…, N
pi Vi[i] = Vi[i] + 1

pi t = Vi

pi t
Vi[j] = max(Vi[j], t[j]) j = 1,2,…, N

42

Also called merge operations

© 2025 Gengrui (Edward) Zhang

What are vector timestamps for following events?

43

© 2025 Gengrui (Edward) Zhang

What are vector timestamps for following events?

44

(1,0,0) (2,0,0)

(2,1,0) (2,2,0)

(0,0,1) (2,2,2)
With vector timestamps,

• If , then

• If , then

a → b V(a) < V(b)
V(a) < V(b) a → b

© 2025 Gengrui (Edward) Zhang 45

Worksheet

