COENG6731 Distributed Software Systems

Week 2: Coordination, Agreement, and Paxos

Gengrui (Edward) Zhang, PhD
Web: gengruizhang.com

© 2025 Gengrui (Edward) Zhang

http://gengruizhang.com

Today’s outline

The consensus problem
Network assumptions

Failure assumptions
Paxos

© 2025 Gengrui (Edward) Zhang

The consensus problem

Let’s go to the beach! Let’s go get some food!

— ——
- ™
\ ">

Let’s go see a movie!

© 2025 Gengrui (Edward) Zhang

The consensus problem

Let’s go to the beach! Let’s go get some food!

— —
- -

(¥ ")
R_OA

A~

What’s important in reaching agreement?

1. Agree on the activities

£\
) 2. Agree on the order of activities
ot i

Let’s go see a movie!

The happened-before
relation of activities

© 2025 Gengrui (Edward) Zhang 3

Consensus in distributed systems

vi=commit v2=commit

Consensus
algorithms

s
@

v3=abort

Consensus in distributed systems

Q

d1=commit

vi=commit v2=commit

o _0o

e

d2=commit

Consensus Consensus
algorithms

algorithms

T V3 d3=commit l v3

v3=abort

© 2025 Gengrui (Edward) Zhang

Formally, the consensus problem

To reach consensus, every process p; begins in the undecided state and
proposes a single value v;, drawn fromaset D (i = 1,2,...,N).

Processes communicate with one another, exchanging values.

Each process then sets the value of a decision variable, d..

After that, each process enters the decided state, where d,
(i=1,2,...,N) do not change

© 2025 Gengrui (Edward) Zhang

Formally, the consensus problem

To reach consensus, every process p; begins in the undecided state and
proposes a single value v;, drawn fromaset D (i = 1,2,...,N).

Processes communicate with one another, exchanging values.

Each process then sets the value of a decision variable, d..

After that, each process enters the decided state, where d,
(i=1,2,...,N) do not change

In short, all correct processes commit
the same value in the same order

© 2025 Gengrui (Edward) Zhang

Today’s outline

Network assumptions

© 2025 Gengrui (Edward) Zhang

System model: network synchrony

e Synchronous
e Asynchronous

e Partially synchronous

P1
Clock skew & I \network delay A

P2

physical time

© 2025 Gengrui (Edward) Zhang

System model: network synchrony

e Synchronous

A) Synchronous:
e Asynchronous
y y Both 6 and A have a fixed
 Partially synchronous upper bound
P1
Clock skew & I \network delay A
P2 ‘

physical time

© 2025 Gengrui (Edward) Zhang

System model: network synchrony

e Synchronous
e Asynchronous

e Partially synchronous

P1
Clock skew & I \network delay A

P2

physical time

© 2025 Gengrui (Edward) Zhang

System model: network synchrony

* Synchronous Asynchronous:
« Asynchronous No fixed upper bound for message delivery
or clock skew (i.e., 6 does not exist, or

* Partially synchronous A does not exist)

P1

Clock skew & I \network delay A

P2

physical time

© 2025 Gengrui (Edward) Zhang

System model: network synchrony

e Synchronous
e Asynchronous

e Partially synchronous

P1
Clock skew & I \network delay A

P2

physical time

© 2025 Gengrui (Edward) Zhang

System model: network synchrony

Partially synchronous:
Communication among servers can have a global
« Asynchronous stabilization time (GST), unknown to processors.

e Synchronous

e Partially synchronous
1. 0 and A both exist but unknown, or

2. 0 and A are known after GST

P1
Clock skew & I \network delay A

P2

physical time

© 2025 Gengrui (Edward) Zhang

Let’s design a simple consensus algorithm

e Assume processes cannot fail
e Synchronous network

 We'd like to have:

Termination: Eventually each correct process sets its
decision variable

Agreement: Decision value of all correct processes is
the same; if p; and p; are correct and ahem entered

the decided state, then d;, = dj(i,j =1,2,....N)
Integrity/Validity: If the correct processes all

proposed the same value, then any correct process in
the decided state has chosen that value.

© 2025 Gengrui (Edward) Zhang

10

Service properties

Termination: Eventually each correct process sets its
decision variable

Agreement: Decision value of all correct processes is
the same; if p; and p; are correct and ahem entered

the decided state, then d; = dj(i,j =1,2,....,N)
Integrity/Validity: If the correct processes all

proposed the same value, then any correct process in
the decided state has chosen that value.

© 2025 Gengrui (Edward) Zhang

11

Service properties

Something cannot happen

Termination: Eventually each correct process sets its
decision variable

Agreement: Decision value of all correct processes is
the same; if p; and p; are correct and ahem entered

the decided state, then d; = dj(i,j =1,2,....,N)
Integrity/Validity: If the correct processes all

proposed the same value, then any correct process in
the decided state has chosen that value.

© 2025 Gengrui (Edward) Zhang

Safety

No two correct nodes
decide differently

11

Service properties

Termination: Eventually each correct process sets its
decision variable

Agreement: Decision value of all correct processes is
the same; if p; and p; are correct and ahem entered

the decided state, then d; = dj(i,j =1,2,....,N)
Integrity/Validity: If the correct processes all

proposed the same value, then any correct process in
the decided state has chosen that value.

Something cannot happen

Safety

No two correct nodes
decide differently

Liveness

Nodes eventually decide

(

Something must happen

© 2025 Gengrui (Edward) Zhang

11

Today’s outline

Failure assumptions

© 2025 Gengrui (Edward) Zhang

12

A problem has been detected and windows has been shut dows vent dam.
TO your computer. RO R P o

If this 15 the first time you've seen this Stop error screen,

restart your computer. If this screen appears again, follow

these steps:

cCheck to be sure you have adequate disk space. If a driver is

Jdentified in the Stop message, disable the driver or check

with the manufacturer for driver updates. Try changing video

adaprers.

check with your hardware vendor for any BIOS updates. Disable
Yo caching or shadowing. you nead

femove or disable components, restart your

SOmputer, press F8 to select Advanced STartup options, and then

select safe Mode.

Technical information:

waw STOP: OX0000008E (OXCO000003 , OXFE643 508, OXAORD7SCO, 0x00000000)

Senl cBlgt, sys - Address FE643306 base At FEAIS000, DATERIIED a72BAad

LTy GAEEING ‘GOOVESS I8 SIVQ GALZCANS IIONPY - SATTAVOMEN eee

COVLEE 20540 00000008 *2EICOTODD ‘OIOI SZEAKO) TICOOIO0RD WOLY man
e e

© 2025 Gengrui (Edward) Zhang

s BUT sy o SIS pEOUTAgY 35eLES 83
Svises s s SLAVILD 9 el G Spow

AT b 5 uins sue s Asowew SO
Sy PeL Ay ALl A Bnaes 0 SLATIND

R o Rty ter) o

melreasL 2" eremages =

L e
2130 Clasgo BB Cue e ul 2930

[e o T2 Ot 250

Tuwader, ity 280 2015
Nes
£
2

E

18T Gue ks st 2038
VYT Gule o ot 2085
VYR Oue o 2230

EYOI61 G e w040
EZYI0D Gate by 5420

EXYIAT Gt o w0450

40Pk Matowss EIYMZ1 Gt i o2 0495
EZY0001 Gate e ¢ 0300

EIYNTI Oute ko st 0208

EZYO0 e b o 05105

EIVETS Gute ke oL 0505

EZYOO1S Gete ko ot 0590

2V Cute e 0590

mres
8 i
Maaze

10Reme

=)

2

-

50 50ta
10 Ascae
20Crens
281w
0ok

o 200e

Gate chowes 1917 45
558
112

VIS Cute oo ot 129
EZVIND Gute ot 1234

- 2vees
243 sacarte vy
90 Pakes Matiocs EZVIESS Dilayed 10 7150

i

965 Raratva
00 trestmnters

For more Information about this issue and possible fbes. visit hitps//www.windows.comVstopcode

Stop code KEANEL AUTO BOOST INVAUID LOCK RELEASE

1 you call » support person, give them this infer

Your PC ran into a problem and needs to restart. We're just collecting

some error info, and then we'll restart for you.

25% complete

Family of faults

 Crash faults
e Omission faults

e Send omission

e Receive omission

e Timing faults

© 2025 Gengrui (Edward) Zhang 14

Family of faults

e Crash faults
e Omission faults
 Send omission

e Receive omission @-x

e Timing faults

© 2025 Gengrui (Edward) Zhang

=)

15

Family of faults

 Crash faults
e Omission faults
 Send omission

<K, v>
* Receive omission @ - y@

e Timing faults

© 2025 Gengrui (Edward) Zhang

16

Family of faults

 Crash faults
e Omission faults
 Send omission

<K, v>
* Receive omission @ - y@

e Timing faults

© 2025 Gengrui (Edward) Zhang

17

Family of faults

 Crash faults
e Omission faults

e Send omission

<k, v>
* Receive omission @ — @

e Timing faults

i1f timer. timeout:
proceed without v

© 2025 Gengrui (Edward) Zhang

18

e Crash faults
e Omission faults

e Send omission

Family of faults

Worst thing that can happen:
S2 does not have the value

<k, v>
* Receive omission @ — ‘ @

e Timing faults

© 2025 Gengrui (Edward) Zhang

19

Family of faults

e Crash faults
 Omission faults

* Send omission

* Receive omission

e Timing faults

Worst thing that can happen:
S2 does not have the value

O
’/fii:ad(k)

<:::> no failure? v :

© 2025 Gengrui (Edward) Zhang

%)

19

Benign faults Famlly of faults

¥

e Crash faults
o Omission faults
 Send omission

e Receive omission

e Timing faults

Worst thing that can happen:
S2 does not have the value

W
’/fii:ad(k)

<:::> no failure? v :

© 2025 Gengrui (Edward) Zhang

%)

20

Benign faults Famlly of faults

¥

e Crash faults

o Omission faults
e Send omission
e Receive omission

e Timing faults

PP

Byzantine faults

e Any arbitrary behaviour, e.g.,
. Stop responding

 Send erroneous values

—

© 2025 Gengrui (Edward) Zhang

21

Benign fault\::; Fam"y of faults

e Crash faults

-« Omission faults

Any arbitrary
behaviour

e Send omission

<k, v>
 * Receive omission | @ e -3
« Timing faults
J Byzantine faults /
* Any arbitrary behaviour, e.g., ‘// @ @ @
. Stop responding |

Read (k) Read (k) Read (k)
* Send erroneous values response: response: x response: y

© 2025 Gengrui (Edward) Zhang 22

Benign fault\s: Fam"y Of faU|tS

e Crash faults | Worst thing that can happen:
Any behaviour that can do the most harm

-« Omission faults

Any arbitrary
behaviour

e Send omission

<K, v>
e Receive omission | @ S—

* Timing faults "
J Byzantine faults /
* Any arbitrary behaviour, e.g., / @ @ @
. Stop responding
Read (k) Read (k) Read (k)
* Send erroneous values response: response: x response: y

© 2025 Gengrui (Edward) Zhang 23

Family of faults: summary

Benign faults

_n

Crash faults
Omission faults

* Send omission
* Receive omission

Timing faults

Fault tolerance

N

Byzantine faults

» Crash fault tolerance (CFT) algorithms

* Paxos, ViewStamped Replication, Raft [ATC’13]

» Applications (everything distributed):
* File systems: HDFS and GFS
» Databases: Google Spanner and etcd
» Coordination: Chubby and Zookeeper

e Any arbitrary behaviour, e.g.,

Stop responding
Send erroneous values

« Byzantine fault tolerance (BFT) algorithms

« PBFT [OSDI’99], HotStuff [PODC’21],
Pompe [OSDI’22]

» Applications (safety critical):
* Unreliable hardware: Airplanes

* Blockchains: Facebook Diem, Microsoft CCF

© 2025 Gengrui (Edward) Zhang

24

Algorithms we will talk about

* Paxos: <- Today'’s topic
 How to choose a value under benign failures

« Raft [ATC’14]:
 How to replicate log under benign failures?

 PBFT [OSDI'99]:

 How to replicate log under Byzantine (arbitrary) failures?

© 2025 Gengrui (Edward) Zhang

25

Today’s outline

Paxos

© 2025 Gengrui (Edward) Zhang

26

Paxos

 Papers:

 Lamport L. The part-time parliament[J]. ACM Transactions on Computer
Systems (TOCS), 1998, 16(2): 133-1609.

 Lamport L. Paxos made simple[J]. ACM Sigact News, 2001, 32(4): 18-25.
e System model
* Asynchronous

« CFT: tolerating benign faults (non-Byzantine)

© 2025 Gengrui (Edward) Zhang

27

Fundamental #1: Server roles

Proposers (leader) AcceptOI‘S (fO”OWGr)

receive client requests * respond to requests from

. roposers
propose received requests Prop

, » validate states of requests
coordinate consensus

process for its proposed store chosen values and
requests state of the process

© 2025 Gengrui (Edward) Zhang

28

Fundamental #1: Server roles

Proposers (leader)

receive client requests
propose received requests

coordinate consensus
process for its proposed
requests

Acceptors (follower)

respond to requests from °
proposers

validate states of requests °

store chosen values and
state of the process

© 2025 Gengrui (Edward) Zhang

Learners (subscriber)

want to know which value
IS chosen

subscribe to acceptors

* one or a few learners
communicate with
acceptors

e propagate the message
among learners

28

Fundamental #1: Server roles

Proposers (leader) Acceptors (follower) Learners (subscriber)

receive client requests * respond to requests from °

. roposers
propose received requests Prop

, * validate states of requests °
coordinate consensus

process for its proposed store chosen values and
requests state of the process

According to the application that uses Paxos,
a server can be a proposer, an acceptor, or both

© 2025 Gengrui (Edward) Zhang

want to know which value
IS chosen

subscribe to acceptors

* one or a few learners
communicate with
acceptors

e propagate the message
among learners

28

Fundamental #2: Proposals

e Each proposal has a unigue number (proposal number)
« Higher number take a priority over lower numbers

« Similar to Lamport clock, proposers can increase a proposal number

© 2025 Gengrui (Edward) Zhang

29

Fundamental #3: Phases

Phase 1. (a) A proposer selects a proposal number n and sends a prepare
request with number n to a majority of acceptors.

Prepare phaSe (b) If an acceptor receives a prepare request with number n greater
(Phase 1) than that of any prepare request to which it has already responded,
then it responds to the request with a promise not to accept any more
proposals numbered less than n and with the highest-numbered pro-

posal (if any) that it has accepted.

Phase 2. (a) If the proposer receives a response to its prepare requests
(numbered n) from a majority of acceptors, then it sends an accept

Accept ph ase request to each of those acceptors for a proposal numbered n with a
value v, where v is the value of the highest-numbered proposal among
(Phase 2) the responses, or is any value if the responses reported no proposals.

(b) If an acceptor receives an accept request for a proposal numbered
n, it accepts the proposal unless it has already responded to a prepare
request having a number greater than n.

© 2025 Gengrui (Edward) Zhang

30

Proposers
|

(1) Choose new proposal number 7. |
(2) Broadcast Prepare(n) to all servers. = (3) Respond to Prepare(n):
-> If n > minProposal, then minProposal = n
-> Return (acceptedProposal, acceptedValue)

Acceptors

(4) When responses received from majority, € =8k
if any acceptedValue returned, replace
value with acceptedValue for highest
acceptedProposal.

(6) Respond to Accept(n, value):
-> If n>= minProposalthen
acceptedProposal = minProposal = n,
acceptedValue = value;

-> Return (minProposal)

(5) Broadcast Accept(n, value) to all servers

(7) When responses received from majority: {ume
-> Any rejections (result > n) : go to (1)
-> Otherwise, value is chosen

R .__]\ S

Acceptors must record minProposal, acceptedProposal, and acceptedValue on stable storage
(disk).

From Dr. Diego Ongaro's Paxos lecture
© 2025 Gengrui (Edward) Zhang 31

Value chosen in different proposal numbers
A proposer “learns” a already chosen value

sl -4 P31 |- A3.1X
S2 -1 P31 A3.1X
S3 - P31 A3.1X
S4 oo
S5 =m-mmeesemsemeeseeeeeeeee-

From Dr. Diego Ongaro's Paxos lecture

© 2025 Gengrui (Edward) Zhang

....... P45 | A45X
| P45 | A45X
| P45 - |A45X

AN

value

server ID

proposal number

32

Value chosen in different proposal numbers
A proposer “learns” a not chosen value

From Dr. Diego Ongaro's Paxos lecture © 2025 Gengrui (Edward) Zhang

33

A new value is chosen in different proposal numbers
A proposer does not see an unchosen value

51 == P 3.1 == A3.1 X """"""""""""" : '_'_'_': """""""""""""""
No pervious '//A3 ~ \\Abandoned
S2 - P84 [value accepted l’ i ' VT
I
\ 1
S3 -1 P81 /P 45 [-----|ABAX|/--|A4BY -
S4 - P45 --—----- o R
Eventually, Y
SH e P45 --—----- A45Y receeenoo-..iS.ChoSEN

From Dr. Diego Ongaro's Paxos lecture © 2025 Gengrui (Edward) Zhang

Livelock

Hint:
=> one solution:
Randomized delay before
restarting. Give other proposers a
chance to finish choosing.

© 2025 Gengrui (Edward) Zhang

Cutting of f

35

Summary of Paxos

Anyone can be a proposer/leader

* Advantages?

e Disadvantages?

Only proposer knows which value has been chosen

If other servers want to know, must execute Paxos with their own
proposal

Competing proposers can cause a livelock

© 2025 Gengrui (Edward) Zhang

36

Worksheet

© 2025 Gengrui (Edward) Zhang

37

