
© 2025 Gengrui (Edward) Zhang

COEN6731 Distributed Software Systems

Week 2: Coordination, Agreement, and Paxos

Gengrui (Edward) Zhang, PhD

Web: gengruizhang.com

http://gengruizhang.com

© 2025 Gengrui (Edward) Zhang 2

Today’s outline

The consensus problem

Network assumptions

Failure assumptions

Paxos

© 2025 Gengrui (Edward) Zhang

The consensus problem

3

Let’s go to the beach! Let’s go get some food!

Let’s go see a movie!

© 2025 Gengrui (Edward) Zhang

The consensus problem

3

Let’s go to the beach! Let’s go get some food!

Let’s go see a movie!

What’s important in reaching agreement?

1. Agree on the activities

2. Agree on the order of activities

The happened-before
relation of activities

© 2025 Gengrui (Edward) Zhang

Consensus in distributed systems

4

P1 P2

P3

Consensus
algorithms

v1=commit

v3

v2=commit

v3=abort

© 2025 Gengrui (Edward) Zhang

Consensus in distributed systems

4

P1 P2

P3

Consensus
algorithms

v1=commit

v3

v2=commit

v3=abort

P1 P2

P3

Consensus
algorithms

d1=commit

v3

d2=commit

d3=commit

© 2025 Gengrui (Edward) Zhang

Formally, the consensus problem
• To reach consensus, every process begins in the undecided state and

proposes a single value , drawn from a set .

• Processes communicate with one another, exchanging values.

• Each process then sets the value of a decision variable, .

• After that, each process enters the decided state, where
 do not change

pi
vi D (i = 1,2,…, N)

di

di
(i = 1,2,…, N)

5

© 2025 Gengrui (Edward) Zhang

Formally, the consensus problem
• To reach consensus, every process begins in the undecided state and

proposes a single value , drawn from a set .

• Processes communicate with one another, exchanging values.

• Each process then sets the value of a decision variable, .

• After that, each process enters the decided state, where
 do not change

pi
vi D (i = 1,2,…, N)

di

di
(i = 1,2,…, N)

5

In short, all correct processes commit
the same value in the same order

© 2025 Gengrui (Edward) Zhang 6

Today’s outline

The consensus problem

Network assumptions
Failure assumptions

Paxos

© 2025 Gengrui (Edward) Zhang

System model: network synchrony
• Synchronous

• Asynchronous

• Partially synchronous

7

P1

P2
physical time

Clock skew δ network delay Δ

© 2025 Gengrui (Edward) Zhang

System model: network synchrony
• Synchronous

• Asynchronous

• Partially synchronous

7

Synchronous:
Both and have a fixed  
upper bound

δ Δ

P1

P2
physical time

Clock skew δ network delay Δ

© 2025 Gengrui (Edward) Zhang

System model: network synchrony
• Synchronous

• Asynchronous

• Partially synchronous

8

P1

P2
physical time

Clock skew δ network delay Δ

© 2025 Gengrui (Edward) Zhang

System model: network synchrony
• Synchronous

• Asynchronous

• Partially synchronous

8

Asynchronous:
No fixed upper bound for message delivery  
or clock skew (i.e., does not exist, or  

 does not exist)
δ

Δ

P1

P2
physical time

Clock skew δ network delay Δ

© 2025 Gengrui (Edward) Zhang

System model: network synchrony
• Synchronous

• Asynchronous

• Partially synchronous

9

P1

P2
physical time

Clock skew δ network delay Δ

© 2025 Gengrui (Edward) Zhang

System model: network synchrony
• Synchronous

• Asynchronous

• Partially synchronous

9

P1

P2
physical time

Clock skew δ network delay Δ

Partially synchronous:
Communication among servers can have a global
stabilization time (GST), unknown to processors.

1. and both exist but unknown, or

2. and are known after GST

δ Δ
δ Δ

© 2025 Gengrui (Edward) Zhang

Let’s design a simple consensus algorithm
• Assume processes cannot fail

• Synchronous network

• We’d like to have:

10

Termination: Eventually each correct process sets its
decision variable

Agreement: Decision value of all correct processes is
the same; if and are correct and ahem entered
the decided state, then

Integrity/Validity: If the correct processes all
proposed the same value, then any correct process in
the decided state has chosen that value.

pi pj
di = dj(i, j = 1,2,…, N)

chalk talk

© 2025 Gengrui (Edward) Zhang

Service properties

11

Termination: Eventually each correct process sets its
decision variable

Agreement: Decision value of all correct processes is
the same; if and are correct and ahem entered
the decided state, then

Integrity/Validity: If the correct processes all
proposed the same value, then any correct process in
the decided state has chosen that value.

pi pj
di = dj(i, j = 1,2,…, N)

© 2025 Gengrui (Edward) Zhang

Service properties

11

Termination: Eventually each correct process sets its
decision variable

Agreement: Decision value of all correct processes is
the same; if and are correct and ahem entered
the decided state, then

Integrity/Validity: If the correct processes all
proposed the same value, then any correct process in
the decided state has chosen that value.

pi pj
di = dj(i, j = 1,2,…, N)

Safety
No two correct nodes

decide differently

Something cannot happen

© 2025 Gengrui (Edward) Zhang

Service properties

11

Termination: Eventually each correct process sets its
decision variable

Agreement: Decision value of all correct processes is
the same; if and are correct and ahem entered
the decided state, then

Integrity/Validity: If the correct processes all
proposed the same value, then any correct process in
the decided state has chosen that value.

pi pj
di = dj(i, j = 1,2,…, N)

Safety
No two correct nodes

decide differently

Something cannot happen

Liveness
Nodes eventually decide

Something must happen

© 2025 Gengrui (Edward) Zhang 12

The consensus problem

Network assumptions

Failure assumptions
Paxos

Today’s outline

© 2025 Gengrui (Edward) Zhang

Faults…

13

© 2025 Gengrui (Edward) Zhang

Family of faults
• Crash faults

• Omission faults

• Send omission

• Receive omission

• Timing faults

14

S1 S2
<k, v>

© 2025 Gengrui (Edward) Zhang

Family of faults
• Crash faults

• Omission faults

• Send omission

• Receive omission

• Timing faults

15

S1 S2
<k, v>

© 2025 Gengrui (Edward) Zhang

Family of faults
• Crash faults

• Omission faults

• Send omission

• Receive omission

• Timing faults

16

S1 S2
<k, v>

© 2025 Gengrui (Edward) Zhang

Family of faults
• Crash faults

• Omission faults

• Send omission

• Receive omission

• Timing faults

17

S1 S2
<k, v>

© 2025 Gengrui (Edward) Zhang

Family of faults
• Crash faults

• Omission faults

• Send omission

• Receive omission

• Timing faults

18

S1 S2
<k, v>

if timer.timeout:
proceed without v

© 2025 Gengrui (Edward) Zhang

Family of faults
• Crash faults

• Omission faults

• Send omission

• Receive omission

• Timing faults

19

S1 S2
<k, v>

Worst thing that can happen:  
S2 does not have the value

© 2025 Gengrui (Edward) Zhang

Family of faults
• Crash faults

• Omission faults

• Send omission

• Receive omission

• Timing faults

19

S1 S2
<k, v>

Worst thing that can happen:  
S2 does not have the value

Cli
Read(k)
no failure? v : ∅

© 2025 Gengrui (Edward) Zhang

Family of faults

20

S1 S2
<k, v>

Worst thing that can happen:  
S2 does not have the value

Cli
Read(k)
no failure? v : ∅

• Crash faults

• Omission faults

• Send omission

• Receive omission

• Timing faults

Benign faults

© 2025 Gengrui (Edward) Zhang

Family of faults
• Crash faults

• Omission faults

• Send omission

• Receive omission

• Timing faults

21

S1 S2
<k, v>

Benign faults

• Any arbitrary behaviour, e.g.,

• Stop responding

• Send erroneous values

Byzantine faults

© 2025 Gengrui (Edward) Zhang

Family of faults
• Crash faults

• Omission faults

• Send omission

• Receive omission

• Timing faults

22

S1 S2
<k, v>

Cli

Benign faults

• Any arbitrary behaviour, e.g.,

• Stop responding

• Send erroneous values

Byzantine faults

Any arbitrary
behaviour

Cli Cli

Read(k)
response: ∅

Read(k)
response: x

Read(k)
response: y

© 2025 Gengrui (Edward) Zhang

Family of faults
• Crash faults

• Omission faults

• Send omission

• Receive omission

• Timing faults

23

S1 S2
<k, v>

Cli

Benign faults

• Any arbitrary behaviour, e.g.,

• Stop responding

• Send erroneous values

Byzantine faults

Any arbitrary
behaviour

Cli Cli

Read(k)
response: ∅

Read(k)
response: x

Read(k)
response: y

Worst thing that can happen: 
Any behaviour that can do the most harm

© 2025 Gengrui (Edward) Zhang

Family of faults: summary

24

Fault tolerance

Benign faults

Byzantine faults

• Crash faults

• Omission faults

• Send omission

• Receive omission

• Timing faults

• Any arbitrary behaviour, e.g.,

• Stop responding

• Send erroneous values

• Crash fault tolerance (CFT) algorithms

• Paxos, ViewStamped Replication, Raft [ATC’13]

• Applications (everything distributed):

• File systems: HDFS and GFS

• Databases: Google Spanner and etcd

• Coordination: Chubby and Zookeeper

• Byzantine fault tolerance (BFT) algorithms

• PBFT [OSDI’99], HotStuff [PODC’21],  

Pompe [OSDI’22]

• Applications (safety critical):

• Unreliable hardware: Airplanes

• Blockchains: Facebook Diem, Microsoft CCF

© 2025 Gengrui (Edward) Zhang

Algorithms we will talk about
• Paxos:

• How to choose a value under benign failures
• Raft [ATC’14]:

• How to replicate log under benign failures?

• PBFT [OSDI’99]:

• How to replicate log under Byzantine (arbitrary) failures?

25

<- Today’s topic

© 2025 Gengrui (Edward) Zhang 26

The consensus problem

Network assumptions

Failure assumptions

Paxos

Today’s outline

© 2025 Gengrui (Edward) Zhang

Paxos
• Papers:

• Lamport L. The part-time parliament[J]. ACM Transactions on Computer
Systems (TOCS), 1998, 16(2): 133-169.

• Lamport L. Paxos made simple[J]. ACM Sigact News, 2001, 32(4): 18-25.

• System model

• Asynchronous

• CFT: tolerating benign faults (non-Byzantine)

27

© 2025 Gengrui (Edward) Zhang

Fundamental #1: Server roles

28

Proposers (leader)

• receive client requests

• propose received requests

• coordinate consensus

process for its proposed
requests

Acceptors (follower)

• respond to requests from

proposers

• validate states of requests

• store chosen values and

state of the process

© 2025 Gengrui (Edward) Zhang

Fundamental #1: Server roles

28

Proposers (leader)

• receive client requests

• propose received requests

• coordinate consensus

process for its proposed
requests

Acceptors (follower)

• respond to requests from

proposers

• validate states of requests

• store chosen values and

state of the process

Learners (subscriber)

• want to know which value

is chosen

• subscribe to acceptors

• one or a few learners

communicate with
acceptors

• propagate the message
among learners

© 2025 Gengrui (Edward) Zhang

Fundamental #1: Server roles

28

Proposers (leader)

• receive client requests

• propose received requests

• coordinate consensus

process for its proposed
requests

Acceptors (follower)

• respond to requests from

proposers

• validate states of requests

• store chosen values and

state of the process

Learners (subscriber)

• want to know which value

is chosen

• subscribe to acceptors

• one or a few learners

communicate with
acceptors

• propagate the message
among learnersAccording to the application that uses Paxos,

a server can be a proposer, an acceptor, or both

© 2025 Gengrui (Edward) Zhang

Fundamental #2: Proposals
• Each proposal has a unique number (proposal number)

• Higher number take a priority over lower numbers

• Similar to Lamport clock, proposers can increase a proposal number

29

© 2025 Gengrui (Edward) Zhang

Fundamental #3: Phases

30

Prepare phase  
(Phase 1)

Accept phase  
(Phase 2)

© 2025 Gengrui (Edward) Zhang 31

From Dr. Diego Ongaro's Paxos lecture

© 2025 Gengrui (Edward) Zhang 32

Value chosen in different proposal numbers

A proposer “learns” a already chosen value

From Dr. Diego Ongaro's Paxos lecture

© 2025 Gengrui (Edward) Zhang 33

Value chosen in different proposal numbers

A proposer “learns” a not chosen value

From Dr. Diego Ongaro's Paxos lecture

© 2025 Gengrui (Edward) Zhang 34

A new value is chosen in different proposal numbers

A proposer does not see an unchosen value

From Dr. Diego Ongaro's Paxos lecture

© 2025 Gengrui (Edward) Zhang 35

Livelock

© 2025 Gengrui (Edward) Zhang

Summary of Paxos
• Anyone can be a proposer/leader

• Advantages?

• Disadvantages?

• Only proposer knows which value has been chosen

• If other servers want to know, must execute Paxos with their own
proposal

• Competing proposers can cause a livelock

36

© 2025 Gengrui (Edward) Zhang 37

Worksheet

